International Journal of Mathematics and Statistics Studies (IJMSS)

EA Journals

Cooling Capacity and Coefficient of Performance

Numerical Study of a Three-Bed (Equal Bed) Adsorption Chiller with Mass Recovery (Published)

In this paper, the performance of a three-bed (equal bed) adsorption chiller with mass recovery has been numerically studied. The mass recovery scheme is used to improve the cooling effect and a CFC-free-based sorption chiller driven by the low-grade waste heat or any renewable energy source can be developed for the next generation of refrigeration. Silica gel/water is taken as adsorbent/adsorbate pair for the present chiller. The three-bed adsorption chiller comprises with three adsorber/desorber heat exchanger, one evaporator and one condenser. In the present numerical solution, the heat source temperature variation is taken from 500C to 650C along with coolant inlet temperature at 300C and the chilled water inlet temperature at 140C. In the new strategy, mass recovery process occurs in all beds. The configuration of beds in the three bed chiller with mass recovery were taken as uniform in size. A cycle simulation computer program is constructed to analyze the influence of operating conditions (hot and cooling water temperature) on COP (coefficient of performance), CC (cooling capacity) and chilled water outlet temperature.

Keywords: Adsorption Chiller, Cooling Capacity and Coefficient of Performance, Mass Recovery, Renewable energy sources, Silica Gel-Water

Numerical Study of a Three-Bed (Unequal Bed) Adsorption Chiller with Mass Recovery (Published)

In this paper, the performance of a three-bed (unequal bed) adsorption chiller with mass recovery has been numerically studied. The mass recovery scheme is used to improve the cooling effect and a CFC-free-based sorption chiller driven by the low-grade waste heat or any renewable energy source can be developed for the next generation of refrigeration. Silica gel/water is taken as adsorbent/adsorbate pair for the present chiller. The three-bed adsorption chiller comprises with three adsorber/desorber heat exchanger, one evaporator and one condenser. In the present numerical solution, the heat source temperature variation is taken from 500C to 900C along with coolant inlet temperature at 300C and the chilled water inlet temperature at 140C. In the new strategy, mass recovery process occurs in all beds where the configuration of Hex1 and Hex2 are identical, but the configuration of Hex3 is taken as half of Hex1 or Hex2. A cycle simulation computer program is constructed to analyze the influence of operating conditions (hot and cooling water temperature) on COP (coefficient of performance), CC (cooling capacity) and chilled water outlet temperature.

Keywords: Adsorption Chiller, Cooling Capacity and Coefficient of Performance, Mass Recovery, Renewable energy sources, Silica Gel-Water

Scroll to Top

Don't miss any Call For Paper update from EA Journals

Fill up the form below and get notified everytime we call for new submissions for our journals.