European Journal of Computer Science and Information Technology (EJCSIT)

EA Journals

Advancing Data Center Reliability Through AI-Driven Predictive Maintenance

Abstract

The evolution of data center maintenance has undergone a transformative shift from traditional reactive and scheduled maintenance to AI-driven predictive maintenance strategies. The integration of artificial intelligence and machine learning technologies enables precise failure prediction, optimizes resource allocation, and enhances operational reliability. Advanced sensor networks and sophisticated analytics pipelines process vast amounts of operational data, while machine learning models, including neural networks, support vector machines, and decision trees, provide accurate predictions of component failures. The implementation framework encompasses system integration, data management, model development, and operational integration, leading to substantial improvements in maintenance efficiency, cost reduction, and equipment longevity. The convergence of human expertise with AI capabilities marks a significant advancement in predictive maintenance, revolutionizing how organizations approach data center operations and reliability management.

Keywords: Artificial Intelligence, Predictive Maintenance, edge computing, machine learning, sensor networks

cc logo

This work by European American Journals is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License

 

Recent Publications

Email ID: editor.ejcsit@ea-journals.org
Impact Factor: 7.80
Print ISSN: 2054-0957
Online ISSN: 2054-0965
DOI: https://doi.org/10.37745/ejcsit.2013

Author Guidelines
Submit Papers
Review Status

 

Scroll to Top

Don't miss any Call For Paper update from EA Journals

Fill up the form below and get notified everytime we call for new submissions for our journals.