Diabetes Neuropathy is a chronic health problem with devastating, yet preventable consequences. Due to this shortage of specialists, there is a need for a Clinical Decision Support System that will diagnose and manage diabetes neuropathy. This work therefore aimed at designing a web-based Clinical Decision Support System for the management of early diabetes neuropathy. Four pattern classification algorithms (K-nearest neighbor, Decision Tree, Decision Stump and Rule Induction) were adopted in this work and were evaluated to determine the most suitable algorithm for the clinical decision support system. Datasets were gathered from reliable sources; two teaching hospitals in Nigeria, these were used for the evaluation Benchmarks such as performance, accuracy level, precision, confusion matrices and the models building’s speed were used in comparing the generated models. The study showed that Naïve Bayes outperformed all other classifiers with accuracy being 60.50%. k-nearest neighbor, Decision Tree, Decision Stump and Rule induction perform well with the lowest accuracy for x- cross validation being 36.50%. Decision Tree falls behind in accuracy, while k-nearest neighbour and Decision Stump maintain accuracy at equilibrium 41.00%. Therefore, Naïve Bayes is adopted as optimal algorithm in the domain of this study. The rules generated from the optimal algorithm (Naïve Bayes) forms the back-end engine of the Clinical Decision Support System. The web-based clinical decision support system was then designed The automatic diagnosis of diabetes neuropathy is an important real-world medical problem. Detection of diabetes neuropathy in its early stages is a key for controlling and managing patients early before the disabling effect present. This system can be used to assist medical programs especially in geographically remote areas where expert human diagnosis not possible with an advantage of minimal expenses and faster results. For further studies, researchers can improve on the proposed clinical decision support system by employing more than one efficient algorithm to develop a hybrid system.
Keywords: Accuracy, Algorithm, Classification, Diabetes, Neuropathy, precision