European Journal of Computer Science and Information Technology (EJCSIT)

EA Journals

Data Leakage Detection

Abstract

We study the following problem: A data distributor has given sensitive data to a set of supposedly trusted agents (third parties). Some of the data are leaked and found in an unauthorized place. The distributor must assess the likelihood that the leaked data came from one or more agents, as opposed to having been independently gathered by other means. We propose data allocation strategies (across the agents) that improve the probability of identifying leakages. These methods do not rely on alterations of the released data (e.g., watermarks). In some cases, we can also inject realistic but fake data records to further improve our chances of detecting leakage and identifying the guilty party.

Keywords: Allocation Strategies, Data Leakage, Data Privacy, Fake Records, Leakage

cc logo

This work by European American Journals is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License

 

Recent Publications

Email ID: editor.ejcsit@ea-journals.org
Impact Factor: 7.80
Print ISSN: 2054-0957
Online ISSN: 2054-0965
DOI: https://doi.org/10.37745/ejcsit.2013

Author Guidelines
Submit Papers
Review Status

 

Scroll to Top

Don't miss any Call For Paper update from EA Journals

Fill up the form below and get notified everytime we call for new submissions for our journals.