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ABSTRACT: In this paper, we use the hybridization of two well-known semi-analytical methods 

to obtain the numerical solutions for some special linear and nonlinear partial differential equations 

that are predominant in most physical science disciplines. The first among these methods is the 

coupling of Laplace transform and Adomian decomposition method (LADM) while the second 

method is standard Homotopy perturbation method with Laplace transform method (HPTM). The 

accuracy and dependability of these proposed techniques is confirmed by applying them to solve 

linear and nonlinear Kleidon-Gordon equations, linear transverse equation of a vibrating beam, 

homogeneous and inhomogeneous nonlinear PDEs, advection equation, diffusion-convection and 

Korteweg-DeVries equation. Thereafter, comparison between the solutions obtained by the 

methods is presented in tables for convergence analysis. Consequently, the findings from our study 

showed the two methods can be effective alternative approaches for obtaining solutions to linear 

and nonlinear PDEs and higher-order initial value problems. 
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INTRODUCTION 

The nonlinear partial differential equation (PDE) is a challenging and critical area of mathematics 

that plays a crucial role in understanding a wide range of natural phenomena and physical 
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processes. Nonlinear PDEs describe complex interactions and behaviour that occur across many 

scientific disciplines, such as physics, engineering, biology, and environmental science, in contrast 

to their linear counterparts. The study of nonlinear PDEs has become a central focus of research 

in applied mathematics and theoretical physics for unravelling intricate patterns, wave phenomena, 

and dynamic systems [1-3]. A nonlinear PDE can be found in many contexts, including fluid 

dynamics, heat transfer, and quantum mechanics. Often, their inherent complexity requires 

sophisticated mathematical methods to analyse and solve. To unravel the underlying dynamics 

encoded in these nonlinear equations, researchers and practitioners use a variety of methods, 

including numerical simulations and analytical approaches. Understanding and solving nonlinear 

PDEs contribute significantly to advancing our comprehension of intricate physical processes and 

phenomena [4-6] 

Nonlinear PDEs are prevalent in many scientific disciplines, which highlights their significance. 

Nonlinear PDEs describe phase transitions and nonlinear diffusion processes in material science, 

and they model the complex interactions between fluid flow, turbulence, and wave propagation in 

fluid dynamics. Nonlinear PDEs are extremely useful in mathematical biology, where they help 

explain the dynamics of disease propagation, pattern development, and population increase. 

Several methods ranging from analytical, numerical, and semi-analytical have been used to solve 

these problems to a great effect. Some of these innovative mathematical techniques include 

Adomian decomposition method (ADM), Homotopy perturbation method (HPM), Homotopy 

analysis method (HAM), Variation iteration method (VIM), Differential transform method 

(DTM), Differential quadrature method (DQM), Abkari-Ganji method (AGM), Temimi-Ansari 

method (TAM), Daftardar-Jafari method (DJM) and others [3-5]. Similarly, the combination of 

two or more of these semi-inverse techniques have been considered especially to nonlinear 

problems to evade the nonlinearity which is often characterized by difficulty in giving rise to 

analytical or approximate solution. [7-9] 

The coupling of the Laplace transforms method and the standard Adomian decomposition 

procedure have been given extensive attention among academics in literature.  Numerous benefits 
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come from studying Laplace Adomian decomposition method (LADM). The first benefit of using 

LADM is that it solves fractional differential equations, both linear and nonlinear, rapidly, and 

efficiently by reducing the equation's structure into a set of recursive schemes. LADM is a 

dependable technique since it yields a sequence of Adomian components that accurately solves the 

problem. Furthermore, LADM is a semi-analytical technique that creates hybrid methods that can 

handle different kinds of differential equations by combining the Adomian decomposition method 

with different transformation methods like Laplace transform, Sumudu transform, Elzaki 

transform, and Aboodh transform. Lastly, LADM is also helpful to neuroscientists and clinical 

research in medicine since it enables the visualization of solitons and numerical simulations with 

an impressively small error measure. Due to the ease of implementation of this method it has been 

effectively implemented to solve diverse problems. Roohani et al. [10] used Laplace-Adomian 

decomposition method to look at the consequences of slip effects on magnetohydrodynamics 

viscous flow through a permeable stretching sheet. Utilizing the pade approximation, the obtained 

analytical solution was improved upon in the convergence domain. Ebiwareme et al. [11-16] have 

employed the Laplace Adomian decomposition method to tackle the food chain ecoepidemic 

model, SIR infectious disease model, dynamics of the Hepatitis E virus, modelling the flow of 

atmospheric CO2 in the atmosphere, crime deterrence model and magnetohydrodynamic flow of 

incompressible fluid between parallel plates.  

Similarly, the Homotopy Perturbation Transform Method (HPTM) is a potent mathematical 

technique that has gained popularity recently because of its effectiveness in resolving a variety of 

challenging nonlinear problems. The Homotopy Perturbation Method (HPTM), which was 

developed as an extension of the HPM, combines the advantages of transforms and perturbation 

methods to produce precise and effective solutions to nonlinear differential equations. This 

approach has shown to be especially beneficial when addressing problems in a variety of technical 

and scientific fields. The primary advantage of HPTM is its capacity to produce extremely precise 

analytical solutions for nonlinear problems. Using modifications and perturbation techniques, 

HPTM makes it possible to generate closed-form solutions, providing insights into the underlying 
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behaviour of complex systems. Second, physics, engineering, and applied mathematics are fields 

where nonlinear problems are frequently encountered. This is where HPTM thrives. Its 

adaptability to nonlinearity of different orders makes it a useful tool for researchers and 

practitioners studying real-world occurrences. Its favourable convergence features also guarantee 

the dependability of its solutions. Its underlying principles are relatively simple, making it 

accessible to researchers and engineers with varying levels of mathematical expertise. This makes 

it a preferred choice when compared to other analytical and numerical methods, especially in 

situations where convergence might be challenging for traditional techniques. HPTM is appealing 

in a variety of disciplines because to its intuitiveness, which makes it easier to apply to a wide 

range of situations. It also strikes a balance between computational economy and analytical 

elegance. When precision and computing cost are considered, it is a preferred option since it offers 

correct solutions with less computational work than some numerical methods. [17-31]. Ebiwareme 

et al. [32-34] have employed to solve physical models comprising complicated PDEs, equations 

governing Jeffrey-Hamel flow and analysis of heat and Mass transfer of convective fluid passing 

through a vertical porous plate under the impression of chemical reaction with inclined magnetic 

field. 

 

The current study examines the convergence analysis of a few specific nonlinear partial differential 

equations by combining the conventional Laplace transform approach with the Adomian 

decomposition method and the Homotopy perturbation method. These hybrid semi-analytical 

techniques are successfully applied to numerical examples in order to approximate the analytical 

solutions for the following: linear and nonlinear Kleidon-Gordon equations; linear transverse 

equation of a vibrating beam; homogeneous and inhomogeneous nonlinear PDEs; advection 

equation; diffusion-convection; and Korteweg-DeVries equation. While Adomian and He's 

polynomials make dealing with nonlinear terms straightforward noise terms are found in all 

nonlinear problems that are examined. The structure of the study is as follows: The foundations of 

the problem-solving methods are covered in sections two and three. Section four solves illustrative 

cases of both linear and nonlinear PDEs, leading to fast convergent solutions. In Section Six, a 
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conclusion to the study is presented, while in Section Five, the findings of the obtained analytical 

solutions are presented in tables and 3D graphics. The outcome corresponds with previous 

research, giving a precise, elegant, and computationally reliable approach. 

2 Laplace Adomian Decomposition method (LADM) 

In this subsection, fundamentals of the fusion of Laplace transformation and Adomian 

decomposition method (LADM) is presented. Consider a functional differential equation of the 

form. 

𝐿[𝑢(𝑥)] + 𝑅[𝑢(𝑥)] + 𝑁[𝑢(𝑥)] = 𝑔(𝑥)                                              (1) 

Subject to the initial condition 

𝑢(𝑥, 0) = 𝑓(𝑥),
𝜕𝑢(𝑥,0)

𝜕𝑡
= ℎ(𝑥)                                               (2) 

Rearranging the above, we obtain the following relation for 𝐿[𝑢(𝑥)]  

𝐿[𝑢(𝑥)] = 𝑔(𝑥) − 𝑅[𝑢(𝑥)] − 𝑁[𝑢(𝑥)]                                              (3) 

Applying Laplace transform on both sides of Eq. (1), supposing the highest differential operator 

is of order two and using the differentiation property, we get. 

𝑠2ℒ{𝑢(𝑥)} − 𝑠ℎ(𝑥) − 𝑓(𝑥) = ℒ{𝑔(𝑥)} − ℒ{𝑅𝑢(𝑥)} − ℒ{𝑁𝑢(𝑥)} 

    

𝑠2ℒ{𝑢(𝑥)} = 𝑠ℎ(𝑥) + 𝑓(𝑥) + ℒ{𝑔(𝑥)} − ℒ{𝑅𝑢(𝑥)} − ℒ{𝑁𝑢(𝑥)} 

ℒ{𝑢(𝑥)} =
ℎ(𝑥)

𝑠
+

𝑓(𝑥)

𝑠2 +
1

𝑠2 ℒ{𝑔(𝑥)} −
1

𝑠2 ℒ{𝑅𝑢(𝑥)} −
1

𝑠2 ℒ{𝑁𝑢(𝑥)}                         (4) 

Next, we apply the inverse transform on both sides of Eq. (4), we obtain. 

𝑢(𝑥) = 𝜙(𝑥) − ℒ−1 [
1

𝑠2 ℒ{𝑅𝑢(𝑥)} −
1

𝑠2 ℒ{𝑁𝑢(𝑥)}]                                 (5) 

where 𝜙(𝑥) is the term arising from the first three terms on the right-hand side of Eq. (5) 

Next, we assume the solution as decomposing series in the form. 

𝑢(𝑥) = ∑ 𝑢𝑛(𝑥)∞
𝑛=0                                                 (6) 

Similarly, the nonlinear terms are written in terms of the Adomian polynomials. 

𝑁𝑢(𝑥) = ∑ 𝐴𝑛
∞
𝑛=0                                                 (7) 
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where the 𝐴𝑛
′𝑠 represents the Adomian polynomials defined in the form 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛 [𝑁(∑ 𝜆𝑖𝑦𝑖
∞
𝑘=0 )]

𝑖=0
, 𝑛 = 0,1,2,3                                             (8) 

Plugging Eqs. (8) and (9) into Eq. (5), we obtain 

∑ 𝑢𝑛(𝑥)∞
𝑛=0 = 𝜙(𝑥) − ℒ−1 [

1

𝑠2 ℒ{𝑅 ∑ 𝑢𝑛(𝑥)∞
𝑛=0 } −

1

𝑠2 ℒ{𝑁 ∑ 𝐴𝑛
∞
𝑛=0 }]                                         (9) 

Matching both sides of Eq. (9), we obtain an iterative algorithm in the form.  

𝑢0(𝑥) = 𝜙(𝑥) 

𝑢1(𝑥) = −ℒ−1 [
1

𝑠2
ℒ {𝑅 ∑ 𝑢0(𝑥)

∞

𝑛=0

} −
1

𝑠2
ℒ {𝑁 ∑ 𝐴0

∞

𝑛=0

}] 

𝑢2(𝑥) = −ℒ−1 [
1

𝑠2 ℒ{𝑅 ∑ 𝑢1(𝑥)∞
𝑛=0 } −

1

𝑠2 ℒ{𝑁 ∑ 𝐴1
∞
𝑛=0 }]                                   (10) 

𝑢3(𝑥) = −ℒ−1 [
1

𝑠2
ℒ {𝑅 ∑ 𝑢2(𝑥)

∞

𝑛=0

} −
1

𝑠2
ℒ {𝑁 ∑ 𝐴2

∞

𝑛=0

}] 

     ⋮ 

𝑢𝑛+1(𝑥) = −ℒ−1 [
1

𝑠2
ℒ {𝑅 ∑ 𝑢𝑛(𝑥)

∞

𝑛=0

} −
1

𝑠2
ℒ {𝑁 ∑ 𝐴𝑛

∞

𝑛=0

}] 

 

Then the solution of the differential equation is obtained as the sum of decomposed series in the 

form 

𝑢(𝑥) ≈ 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + ⋯                          (11) 

 

3 Homotopy perturbation transform method (HPTM) 

In this subsection, we give the basics of coupling homotopy perturbation method with the Laplace 

transformation, called homotopy perturbation transform method (HPTM) for solving the linear 

and nonlinear PDEs. Consider the functional second order differential equations of the form. 

𝐷𝑢(𝑥, 𝑡) + 𝑅𝑢(𝑥, 𝑡) + 𝑁𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡)                                  (12) 

𝑢(𝑥, 0) = 𝜙(𝑥), 𝑢𝑡(𝑥, 0) = 𝑓(𝑥)                                          (13) 

where 𝐷 denote a second order linear differential operator, 𝑅 represents linear differential operator 

of order less than 𝐷, 𝑁 is a nonlinear differential operator and 𝑔(𝑥) is called the source term. 
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Taking the Laplace transform of both sides of Eq. (22), we have the expression. 

𝐿[𝐷𝑢(𝑥, 𝑡)] + 𝐿[𝑅𝑢(𝑥, 𝑡)] + 𝐿[𝑁𝑢(𝑥, 𝑡)] = 𝐿[𝑔(𝑥, 𝑡)]                (14) 

𝑠2𝐿[𝑢(𝑥, 𝑡)] − 𝑠𝑢(𝑥, 0) − 𝑢𝑡(𝑥, 0) + 𝐿[𝑅𝑢(𝑥, 𝑡)] + 𝐿[𝑁𝑢(𝑥, 𝑡)] = 𝐿[𝑔(𝑥, 𝑡)]     (15) 

Invoking the initial condition into Eq. (15), we obtain 

𝐿[𝑢(𝑥, 𝑡)] =
𝜉(𝑥)

𝑠
+

𝑓(𝑥)

𝑠
+

1

𝑠2 𝐿[𝑔(𝑥, 𝑡)] −
1

𝑠2 𝐿[𝑅𝑢(𝑥, 𝑡)] −
1

𝑠2 𝐿[𝑁𝑢(𝑥, 𝑡)]         (16) 

Taking the inverse Laplace transform of both sides of Eq. (26), we have. 

𝑢(𝑥, 𝑡) = 𝜓(𝑥, 𝑡) − ℒ−1 [
1

𝑠2 𝐿[𝑅𝑢(𝑥, 𝑡)] +
1

𝑠2 𝐿[𝑁𝑢(𝑥, 𝑡)]]                   (17) 

where 𝜓(𝑥, 𝑡) is the term that originates from the integration of the source term subject to the 

prescribed initial conditions 

Next, we apply the HPM for the solution as well as the nonlinear terms as follows.  

𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0                                                  (18) 

𝑁𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝐻𝑛(𝑥, 𝑡)∞
𝑛=0                                                   (19) 

where 𝐻𝑛(𝑢) are the so-called He’s polynomials defined by 

𝐻𝑛(𝑢0, 𝑢1, … , 𝑢𝑛) =
1

𝑛!

𝜕𝑛

𝜕𝑝𝑛 (𝑁(∑ 𝑝𝑛𝑢𝑛
𝑛
𝑘=0 ))

𝑝=0
, 𝑝 = 0,1,2                         (20) 

Substituting Eqs. (18) and (19) into Eq. (17), we have the equivalent expression as  

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡) = 𝜓(𝑥, 𝑡) − 𝑝 (ℒ−1 [
1

𝑠2 𝐿[𝑅 ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 + ∑ 𝑝𝑛𝐻𝑛(𝑢(𝑥, 𝑡))∞

𝑛=0 ]])∞
𝑛=0        (21) 

Comparing the coefficients of like powers of 𝑝, we obtain the following approximations given as 

𝑝0: 𝑢0(𝑥, 𝑡) = 𝜓(𝑥, 𝑡) 

𝑝1: 𝑢1(𝑥, 𝑡) = −ℒ−1 [
1

𝑠2
𝐿[𝑅𝑢0(𝑥, 𝑡) + 𝐻0(𝑢(𝑥, 𝑡))]] 

𝑝2: 𝑢2(𝑥, 𝑡) = −ℒ−1 [
1

𝑠2 𝐿[𝑅𝑢1(𝑥, 𝑡) + 𝐻1(𝑢(𝑥, 𝑡))]]                             (22) 
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𝑝3: 𝑢3(𝑥, 𝑡) = −ℒ−1 [
1

𝑠2
𝐿[𝑅𝑢2(𝑥, 𝑡) + 𝐻2(𝑢(𝑥, 𝑡))]] 

𝑝4: 𝑢4(𝑥, 𝑡) = −ℒ−1 [
1

𝑠2
𝐿[𝑅𝑢3(𝑥, 𝑡) + 𝐻3(𝑢(𝑥, 𝑡))]] 

⋮ 

Using Eq. (22), the approximate solution of the given problem takes the form. 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯∞
𝑛=0              (23) 

4 Analysis of Illustrative Examples using HPTM 

In this section, we apply the proposed hybrid techniques to solve eight linear and nonlinear partial 

differential equations namely: linear and nonlinear Kleidon-Gordon equations, linear transverse 

equation of a vibrating beam, homogeneous and inhomogeneous nonlinear PDEs, advection 

equation, diffusion-convection and KDV equation respectively. The iterative approximations from 

the recursive algorithms are computed using Mathematica version 13. 

Example 1 Consider the linear Klein-Gordon equation. 

𝜕2𝑢

𝜕𝑡2 −
𝜕2𝑢

𝜕𝑥2 = 𝑢                               (24) 

Subject to the initial conditions, 𝑢(𝑥, 0) = 1 + sin 𝑥, 𝑢𝑡(𝑥, 0) = 0 

Taking the Laplace transform of both sides and invoking the initial conditions, we have. 

 

𝑢(𝑥, 𝑠) =
1+sin 𝑥

𝑠
+

1

𝑠2
𝐿 (𝑢 +

𝜕2𝑢

𝜕𝑥2
)                                 (25) 

Taking the inverse Laplace transformation of both sides of the above, we have 

𝑢(𝑥, 𝑡) = 1 + sin 𝑥 +
1

𝑠2
𝐿 (𝑢 +

𝜕2𝑢

𝜕𝑥2
)                                  (26) 

 

Next, apply the Homotopy perturbation method on the above equation, we have. 

𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0                                       (27) 
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Plugging the above into the given equation we obtain the expression of the form. 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = 1 + sin 𝑥 + 𝐿−1 [

1

𝑠2 𝐿 (∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 +

𝜕2

𝜕𝑥2
∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 )]  (28) 

Comparing the coefficients of like powers of 𝑝, we have the approximate solutions. 

𝑝0: 𝑢0(𝑥, 𝑡) = 1 + sin 𝑥 

𝑝1: 𝑢1(𝑥, 𝑡) = 𝐿−1 [
1

𝑠2
𝐿 (𝑢0(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢0(𝑥, 𝑡))] =

𝑡2

2!
 

𝑝2: 𝑢2(𝑥, 𝑡) = 𝐿−1 [
1

𝑠2 𝐿 (𝑢1(𝑥, 𝑡) +
𝜕2

𝜕𝑥2 𝑢1(𝑥, 𝑡))] =
𝑡4

4!
                      (29) 

𝑝3: 𝑢3(𝑥, 𝑡) = 𝐿−1 [
1

𝑠2
𝐿 (𝑢2(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢2(𝑥, 𝑡))] =

𝑡6

6!
 

⋮ 

Using the relation, 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯∞
𝑛=0  , the 

approximate solution become 

𝑢(𝑥, 𝑡) = 1 + sin 𝑥 +
𝑡2

2!
+

𝑡4

4!
+

𝑡6

6!
+ ⋯                         (30) 

The closed form solution of the above in series form is gives the expression. 

𝑢(𝑥, 𝑡) = sin 𝑥 + cosh 𝑡                                        (31) 

Example 2. Consider the following homogenous nonlinear PDE. 

𝜕𝑢

𝜕𝑡
− 𝑢 − 𝑢

𝜕2𝑢

𝜕𝑥2
− (

𝜕𝑢

𝜕𝑥
)

2

= 0                                         (32) 

With the initial condition, 𝑢(𝑥, 0) = √𝑥 

Taking the Laplace transform of both sides with respect to 𝑡 subject to the initial condition, we 

have. 

𝑢(𝑥, 𝑠) =
√𝑥

𝑠
+

1

𝑠
𝐿 [𝑢 + 𝑢

𝜕2𝑢

𝜕𝑥2
+ (

𝜕𝑢

𝜕𝑥
)

2

]                        (33) 

Taking the inverse Laplace transform of both sides of the above gives. 
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𝑢(𝑥, 𝑡) = √𝑥 + 𝐿−1 [
1

𝑠
𝐿 [𝑢 + 𝑢

𝜕2𝑢

𝜕𝑥2
+ (

𝜕𝑢

𝜕𝑥
)

2

]]                      (34) 

Next, we apply the Homotopy perturbation method by writing the solution term as a decomposition 

series. 

𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 

Plugging the above expression into the above equation gives the form. 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = √𝑥 + 𝑝 (𝐿−1 [

1

𝑠
𝐿[∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 ] +
1

𝑠
𝐿[∑ 𝑝𝑛𝐻𝑛(𝑢)∞

𝑛=0 ]])        (35) 

where 𝐻𝑛 are the He’s polynomials that represents the nonlinear terms. The first few components 

of these He’s polynomials are given as   

𝐻0(𝑢) = 𝑢0

𝜕2𝑢0

𝜕𝑥2
+ (

𝜕𝑢0

𝜕𝑥
)

2

= 0 

𝐻1(𝑢) = 𝑢0
𝜕2𝑢1

𝜕𝑥2 + 𝑢1
𝜕2𝑢0

𝜕𝑥2 + 2
𝜕𝑢0

𝜕𝑥
.

𝜕𝑢1

𝜕𝑥
= 0                            (36) 

𝐻2(𝑢) = 𝑢0

𝜕2𝑢2

𝜕𝑥2
+ 𝑢1

𝜕2𝑢1

𝜕𝑥2
+ 𝑢2

𝜕2𝑢0

𝜕𝑥2
+ (

𝜕𝑢1

𝜕𝑥
)

2

+ 2
𝜕𝑢0

𝜕𝑥
.
𝜕𝑢2

𝜕𝑥
= 0 

⋮  

Comparing the coefficients of like powers of 𝑝, we have the iterative approximations as 

𝑝0: 𝑢0(𝑥, 𝑡) = √𝑥 

𝑝1: 𝑢1(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
(𝐿[𝑢0(𝑥, 𝑡)] + 𝐿[𝐻0(𝑢)])] = √𝑥𝑡 

𝑝2: 𝑢2(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
(𝐿[𝑢1(𝑥, 𝑡)] + 𝐿[𝐻1(𝑢)])] = √𝑥

𝑡2

2!
                      (37) 

𝑝3: 𝑢3(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
(𝐿[𝑢2(𝑥, 𝑡)] + 𝐿[𝐻2(𝑢)])] = √𝑥

𝑡3

3!
 

⋮ 

And so, the approximate series solution of the problem is given as 

𝑢(𝑥, 𝑡) = √𝑥 (1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+ ⋯ ) = √𝑥𝑒𝑡                             (38) 
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Example 3. Consider the following Advection problem. 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 2𝑡 + 𝑥 + 𝑡3 + 𝑥𝑡2                                     (39) 

with the initial condition, 𝑢(𝑥, 0) = 0 

Taking the Laplace transform of both sides subject to the initial condition, we have. 

𝑢(𝑥, 𝑠) =
2

𝑠3
+

𝑥

𝑠2
+

6

𝑠5
+

2𝑥

𝑠4
−

1

𝑠
𝐿 [𝑢

𝜕𝑢

𝜕𝑥
]                           (40) 

Taking the inverse Laplace transform of both sides gives. 

𝑢(𝑥, 𝑡) = 𝑡2 + 𝑥𝑡 +
𝑡4

4
+

𝑥𝑡3

3
− 𝐿−1 [

1

𝑠
𝐿 [𝑢

𝜕𝑢

𝜕𝑥
]]                         (41) 

Now, we apply the Homotopy perturbation method, we have. 

𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 

Plugging the above into the given problem gives the form. 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = 𝑡2 + 𝑥𝑡 +

𝑡4

4
+

𝑥𝑡3

3
− 𝑝 (𝐿−1 [

1

𝑠
𝐿[∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 ]])        (42) 

where 𝐻𝑛 are the so-called He’s polynomials that represents the nonlinear terms. The first few 

components are given as  

𝐻0(𝑢) = 𝑢0𝑢0𝑥 

𝐻1(𝑢) = 𝑢0𝑢1𝑥 + 𝑢1𝑢0𝑥 

𝐻2(𝑢) = 𝑢0𝑢2𝑥 + 𝑢1𝑢1𝑥 + 𝑢2𝑢0𝑥                                    (43) 

𝐻3(𝑢) = 𝑢0𝑢3𝑥 + 𝑢1𝑢2𝑥 + 𝑢2𝑢1𝑥 + 𝑢3𝑢0𝑥 

⋮ 

Comparing the coefficients of the like powers of 𝑝, we have the expressions for the iterative 

solutions given as 

𝑝0: 𝑢0(𝑥, 𝑡) = 𝑡2 + 𝑥𝑡 +
𝑡4

4
+

𝑥𝑡3

3
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𝑝1: 𝑢1(𝑥, 𝑡) = −𝐿−1 [
1

𝑠
𝐿[𝐻0(𝑢)]] = −

𝑡4

4
−

𝑥𝑡3

3
−

2𝑥𝑡5

15
+

7𝑡6

72
−

𝑥𝑡7

63
−

𝑡8

98
        (44) 

𝑝2: 𝑢2(𝑥, 𝑡) = −𝐿−1 [
1

𝑠
𝐿[𝐻1(𝑢)]]

=
5𝑡12

8064
+

2𝑥𝑡11

2079
+

2783𝑡10

302400
+

38𝑥𝑡9

2835
+

143𝑡8

2880
+

22𝑥𝑡7

315
+

7𝑡6

12
+

2𝑥𝑡5

15
 

Cancelling out the noise terms in the components, 𝑢0(𝑥, 𝑡) and 𝑢1(𝑥, 𝑡). The exact solution of 

the problem become. 

𝑢(𝑥, 𝑡) = 𝑡2 + 𝑥𝑡                                                   (45) 

Example 4. Consider the following diffusion-convection problem.  

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2 − 𝑢                                                              (46) 

with the initial conditions, 𝑢(𝑥, 0) = 𝑥 + 𝑒−𝑥 

Taking the Laplace transform of both sides of the given equation and invoking the initial 

conditions gives the form. 

𝑢(𝑥, 𝑠) =
𝑥+𝑒−𝑥

𝑠
+

1

𝑠
𝐿 [

𝜕2𝑢

𝜕𝑥2 − 𝑢]                                       (47) 

Taking the inverse Laplace transform of both sides, we obtain. 

𝑢(𝑥, 𝑡) = 𝑥 + 𝑒−𝑥 + 𝐿−1 [
1

𝑠
𝐿 [

𝜕2𝑢

𝜕𝑥2 − 𝑢]]                             (48) 

Next, we apply the Homotopy perturbation method, we get.  

𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 

Plugging the above expression into the inverse equation, we have the form. 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = 𝑥 + 𝑒−𝑥 + 𝐿−1 [

1

𝑠
𝐿 [

𝜕2

𝜕𝑥2
(∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 ) − ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 ]]      (49) 

Comparing the coefficients of like powers of 𝑝, we have  
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𝑝0: 𝑢0(𝑥, 𝑡) = 𝑥 + 𝑒−𝑥 

𝑝1: 𝑢1(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
𝐿 [

𝜕2𝑢0

𝜕𝑥2
− 𝑢0(𝑥, 𝑡)]] = −𝑥𝑡 

𝑝2: 𝑢2(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
𝐿 [

𝜕2𝑢1

𝜕𝑥2
− 𝑢1(𝑥, 𝑡)]] = 𝑥

𝑡2

2!
                            (50) 

𝑝3: 𝑢3(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
𝐿 [

𝜕2𝑢2

𝜕𝑥2
− 𝑢2(𝑥, 𝑡)]] = −𝑥

𝑡3

3!
 

⋮ 

And so on, therefore the series solution is given in the form. 

𝑢(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥 (1 − 𝑡 +
𝑡2

2!
−

𝑡3

3!
+ ⋯ ) 

which converges rapidly to the exact solution given as 

𝑢(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥𝑒−𝑡                                                 (51) 

Example 5. Consider the inhomogeneous nonlinear Klein-Gordon equation. 

𝜕2𝑢

𝜕𝑡2 −
𝜕2𝑢

𝜕𝑥2 + 𝑢2 = −𝑥 cos 𝑡 + 𝑥2 cos2 𝑡                      (52) 

with the initial condition, 𝑢(𝑥, 0) = 𝑥, 𝑢𝑡(𝑥, 0) = 0 

Taking the Laplace transform of both sides of the given equation subject to the initial condition 

and rearranging gives. 

𝑢(𝑥, 𝑠) =
𝑥

𝑠
−

𝑥

𝑠(1+𝑠2)
+

(2+𝑠2)𝑥2

𝑠3(4+𝑠2)
+

1

𝑠
𝐿 [

𝜕2𝑢

𝜕𝑥2 − 𝑢2]                      (53) 

Taking the inverse Laplace transform gives the expression. 

𝑢(𝑥, 𝑡) = 𝑥 cos 𝑡 −
1

8
𝑥2 cos 𝑡 +

1

4
𝑥2𝑡2 +

𝑥2

8
+ 𝐿−1 [

1

𝑠
𝐿 [

𝜕2𝑢

𝜕𝑥2
− 𝑢2]]            (54) 

Next, we apply the homotopy perturbation method, we have. 

𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0
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Plugging into the given equation gives the expression in terms of the perturbation parameter. 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = 𝑥 cos 𝑡 −

1

8
𝑥2 cos 𝑡 +

1

4
𝑥2𝑡2 +

𝑥2

8
+ 𝑝 (𝐿−1 [

1

𝑠
𝐿 [

𝜕2

𝜕𝑥2
(∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 ) −

∑ 𝑝𝑛𝐻𝑛(𝑢)∞
𝑛=0 ]])                                                 (55) 

where 𝐻𝑛(𝑢) represent the so-called He’s polynomials. The first few of them are defined as 

𝐻0(𝑢) = 𝑢0
2 

𝐻1(𝑢) = 2𝑢0𝑢1 

𝐻2(𝑢) = 2𝑢0𝑢2 + 𝑢1
2                                                   (56) 

𝐻1(𝑢) = 2𝑢0𝑢3 + 2𝑢1𝑢2 

Comparing the coefficients of like powers of 𝑝, we have the iterative approximations given as 

𝑝0: 𝑢0(𝑥, 𝑡) = 𝑥 cos 𝑡 −
1

8
𝑥2 cos 𝑡 + (

𝑥𝑡

2
)

2

+
𝑥2

8
 

𝑝1: 𝑢1(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
𝐿 [

𝜕2𝑢0

𝜕𝑥2 − 𝐻0(𝑢)]] =
1

8
𝑥2 cos 𝑡 − (

𝑥𝑡

2
)

2

−
𝑥2

8
+

1

64
cos 2𝑡 + ⋯      (57) 

Cancelling out the noise terms in the 𝑢0(𝑥, 𝑡) and 𝑢1(𝑥, 𝑡), then the remaining terms of 𝑢0(𝑥, 𝑡) 

which satisfies the given problem gives the solution as  

𝑢(𝑥, 𝑡) = 𝑥 cos 𝑡                                               (58) 

Example 6. Consider the following inhomogeneous nonlinear PDE given as 

𝜕2𝑢

𝜕𝑡2
+

𝜕2𝑢

𝜕𝑥2
+ (

𝜕𝑢

𝜕𝑥
)

2

= 2𝑥 + 𝑡4                                         (59) 

with the initial conditions, 𝑢(𝑥, 0) = 0, 𝑢𝑡(𝑥, 0) = 2 

Taking the Laplace transform of both sides of the given problem subject to the initial condition 

and rearranging gives the resulting expression. 
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𝑢(𝑥, 𝑠) =
2

𝑠2 +
2𝑥

𝑠3 +
24

𝑠7 −
1

𝑠2 𝐿 [
𝜕2𝑢

𝜕𝑥2 + (
𝜕𝑢

𝜕𝑥
)

2

]                              (60) 

Taking the inverse Laplace transform of both sides, we have. 

𝑢(𝑥, 𝑡) = 2𝑡 + 𝑥𝑡2 +
𝑡6

30
− 𝐿−1 [

1

𝑠2 𝐿 [
𝜕2𝑢

𝜕𝑥2 + (
𝜕𝑢

𝜕𝑥
)

2

]]                     (61) 

Next, we apply the Homotopy perturbation method, we obtain. 

𝑢(𝑥, 𝑡) = ∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 

Substitution into the above expression gives the expression. 

∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = 2𝑡 + 𝑥𝑡2 +

𝑡6

30
− 𝐿−1 [

1

𝑠2 𝐿 [
𝜕2

𝜕𝑥2
(∑ 𝑝𝑛𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 ) + ∑ 𝑝𝑛𝐻𝑛(𝑢)∞
𝑛=0 ]]     (62) 

The first few terms of the He’s polynomials denoted 𝐻𝑛(𝑢) are given by the expressions. 

𝐻0(𝑢) = (
𝜕𝑢0

𝜕𝑥
)

2

= 𝑡4 

𝐻1(𝑢) = 2
𝜕𝑢0

𝜕𝑥

𝜕𝑢1

𝜕𝑥
= 0 

𝐻2(𝑢) = (
𝜕𝑢1

𝜕𝑥
)

2

+ 2
𝜕𝑢0

𝜕𝑥

𝜕𝑢2

𝜕𝑥
= 0                                 (63) 

𝐻3(𝑢) = 2
𝜕𝑢0

𝜕𝑥

𝜕𝑢3

𝜕𝑥
+ 2

𝜕𝑢1

𝜕𝑥

𝜕𝑢2

𝜕𝑥
= 0 

Comparing the coefficients of like powers of 𝑝, the iterative approximations become 

𝑝0: 𝑢0(𝑥, 𝑡) = 2𝑡 + 𝑥𝑡2 +
𝑡6

30
 

𝑝1: 𝑢1(𝑥, 𝑡) = −𝐿−1 [
1

𝑠2 𝐿 [
𝜕2𝑢0

𝜕𝑥2 + 𝐻0(𝑢)]] = −
𝑡6

30
                          (64) 
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𝑝2: 𝑢2(𝑥, 𝑡) = −𝐿−1 [
1

𝑠2
𝐿 [

𝜕2𝑢1

𝜕𝑥2
+ 𝐻1(𝑢)]] = 0 

⋮ 

𝑝𝑘: 𝑢𝑘(𝑥, 𝑡) = 0, 𝑘 ≥ 2 

Therefore, the exact solution of the problem is given as follows. 

𝑢(𝑥, 𝑡) = 2𝑡 + 𝑥𝑡2                                                        (65) 

5 Implementation of illustrative Examples using LADM 

Example 1 Consider the linear Klein-Gordon equation. 

𝜕2𝑢

𝜕𝑡2 −
𝜕2𝑢

𝜕𝑥2 = 𝑢                                                              (66) 

Subject to the initial conditions, 𝑢(𝑥, 0) = 1 + sin 𝑥, 𝑢𝑡(𝑥, 0) = 0 

Taking the Laplace transform of both sides and invoking the initial conditions, we have. 

 

𝑢(𝑥, 𝑠) =
1+sin 𝑥

𝑠
+

1

𝑠2 𝐿 (𝑢 +
𝜕2𝑢

𝜕𝑥2)                                        (67) 

Taking the inverse Laplace transformation of both sides of the above, we have 

𝑢(𝑥, 𝑡) = 1 + sin 𝑥 +
1

𝑠2
𝐿 (𝑢 +

𝜕2𝑢

𝜕𝑥2
)                                    (68) 

 

Next, writing the unknown as a decomposition series of the form, we have. 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 

Plugging the above into the given equation we obtain the expression of the form. 

∑ 𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = 1 + sin 𝑥 + 𝐿−1 [

1

𝑠2
𝐿 (∑ 𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 +
𝜕2

𝜕𝑥2
∑ 𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 )]          (69) 
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Comparing the coefficients of like powers of both sides, we have the approximate solutions as 

𝑢0(𝑥, 𝑡) = 1 + sin 𝑥 

𝑢1(𝑥, 𝑡) = 𝐿−1 [
1

𝑠2
𝐿 (𝑢0(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢0(𝑥, 𝑡))] =

𝑡2

2!
 

𝑢2(𝑥, 𝑡) = 𝐿−1 [
1

𝑠2 𝐿 (𝑢1(𝑥, 𝑡) +
𝜕2

𝜕𝑥2 𝑢1(𝑥, 𝑡))] =
𝑡4

4!
                               (70) 

𝑢3(𝑥, 𝑡) = 𝐿−1 [
1

𝑠2
𝐿 (𝑢2(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢2(𝑥, 𝑡))] =

𝑡6

6!
 

⋮ 

Using the relation, 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯∞
𝑛=0  , the 

approximate solution become 

𝑢(𝑥, 𝑡) = 1 + sin 𝑥 +
𝑡2

2!
+

𝑡4

4!
+

𝑡6

6!
+ ⋯ 

The closed form solution of the above in series form is gives the expression. 

𝑢(𝑥, 𝑡) = sin 𝑥 + cosh 𝑡                                               (71) 

Example 2. Consider the following homogenous nonlinear PDE. 

𝜕𝑢

𝜕𝑡
− 𝑢 − 𝑢

𝜕2𝑢

𝜕𝑥2 − (
𝜕𝑢

𝜕𝑥
)

2

= 0                                         (72) 

with the initial condition, 𝑢(𝑥, 0) = √𝑥 

Taking the Laplace transform of both sides with respect to 𝑡 subject to the initial condition, we 

have. 

𝑢(𝑥, 𝑠) =
√𝑥

𝑠
+

1

𝑠
𝐿 [𝑢 + 𝑢

𝜕2𝑢

𝜕𝑥2 + (
𝜕𝑢

𝜕𝑥
)

2

]                                   (73) 

Taking the inverse Laplace transform of both sides and substituting the initial condition gives. 

𝑢(𝑥, 𝑡) = √𝑥 + 𝐿−1 [
1

𝑠
𝐿 [𝑢 + 𝑢

𝜕2𝑢

𝜕𝑥2 + (
𝜕𝑢

𝜕𝑥
)

2

]]                            (74) 

By the standard Adomian procedure, we write the solution term as a decomposition series. 
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𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 

Plugging the above expression into the above equation gives the form. 

 

∑ 𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = √𝑥 + (𝐿−1 [

1

𝑠
𝐿[∑ 𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 ] +
1

𝑠
𝐿[∑ 𝐴𝑛(𝑢)∞

𝑛=0 ]])                  (75) 

where 𝐴𝑛 are the Adomian polynomials that represents the nonlinear terms. The first few 

components of these Adomian polynomials are given as   

𝐴0(𝑢) = 𝑢0

𝜕2𝑢0

𝜕𝑥2
+ (

𝜕𝑢0

𝜕𝑥
)

2

= 0 

𝐴1(𝑢) = 𝑢0
𝜕2𝑢1

𝜕𝑥2 + 𝑢1
𝜕2𝑢0

𝜕𝑥2 + 2
𝜕𝑢0

𝜕𝑥
.

𝜕𝑢1

𝜕𝑥
= 0                               (76) 

𝐴2(𝑢) = 𝑢0

𝜕2𝑢2

𝜕𝑥2
+ 𝑢1

𝜕2𝑢1

𝜕𝑥2
+ 𝑢2

𝜕2𝑢0

𝜕𝑥2
+ (

𝜕𝑢1

𝜕𝑥
)

2

+ 2
𝜕𝑢0

𝜕𝑥
.
𝜕𝑢2

𝜕𝑥
= 0 

⋮  

Comparing the coefficients of both sides, we have the iterative approximations as 

𝑢0(𝑥, 𝑡) = √𝑥 

𝑢1(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
(𝐿[𝑢0(𝑥, 𝑡)] + 𝐿[𝐴0(𝑢)])] = √𝑥𝑡 

𝑢2(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
(𝐿[𝑢1(𝑥, 𝑡)] + 𝐿[𝐴1(𝑢)])] = √𝑥

𝑡2

2!
                            (77) 

𝑢3(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
(𝐿[𝑢2(𝑥, 𝑡)] + 𝐿[𝐴2(𝑢)])] = √𝑥

𝑡3

3!
 

⋮ 

And so, the approximate series solution of the problem is given as 

𝑢(𝑥, 𝑡) = √𝑥 (1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+ ⋯ ) = √𝑥𝑒𝑡                                  (78) 

 

 

Example 3. Consider the following Advection problem. 
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 2𝑡 + 𝑥 + 𝑡3 + 𝑥𝑡2                                            (79) 

with the initial condition, 𝑢(𝑥, 0) = 0 

Taking the Laplace transform of both sides subject to the initial condition, we have. 

𝑢(𝑥, 𝑠) =
2

𝑠3 +
𝑥

𝑠2 +
6

𝑠5 +
2𝑥

𝑠4 −
1

𝑠
𝐿 [𝑢

𝜕𝑢

𝜕𝑥
]                                   (80) 

Taking the inverse Laplace transform of both sides gives. 

𝑢(𝑥, 𝑡) = 𝑡2 + 𝑥𝑡 +
𝑡4

4
+

𝑥𝑡3

3
− 𝐿−1 [

1

𝑠
𝐿 [𝑢

𝜕𝑢

𝜕𝑥
]]                               (81) 

Writing the solution term as a decomposition series, we have the following. 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 

Plugging the above into the given problem gives the form. 

∑ 𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = 𝑡2 + 𝑥𝑡 +

𝑡4

4
+

𝑥𝑡3

3
− (𝐿−1 [

1

𝑠
𝐿[∑ 𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 ]])                   (82) 

where 𝐴𝑛 are the so-called Adomian polynomials that represents the nonlinear terms. The first few 

components are given as  

𝐴0(𝑢) = 𝑢0𝑢0𝑥 

𝐴1(𝑢) = 𝑢0𝑢1𝑥 + 𝑢1𝑢0𝑥 

𝐴2(𝑢) = 𝑢0𝑢2𝑥 + 𝑢1𝑢1𝑥 + 𝑢2𝑢0𝑥                                               (83) 

𝐴3(𝑢) = 𝑢0𝑢3𝑥 + 𝑢1𝑢2𝑥 + 𝑢2𝑢1𝑥 + 𝑢3𝑢0𝑥 

⋮ 

Comparing the coefficients of both sides, we have the expressions for the iterative solutions 

given as 

𝑢0(𝑥, 𝑡) = 𝑡2 + 𝑥𝑡 +
𝑡4

4
+

𝑥𝑡3

3
 

𝑢1(𝑥, 𝑡) = −𝐿−1 [
1

𝑠
𝐿[𝐻0(𝑢)]] = −

𝑡4

4
−

𝑥𝑡3

3
−

2𝑥𝑡5

15
+

7𝑡6

72
−

𝑥𝑡7

63
−

𝑡8

98
                 (84) 
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𝑢2(𝑥, 𝑡) = −𝐿−1 [
1

𝑠
𝐿[𝐻1(𝑢)]]

=
5𝑡12

8064
+

2𝑥𝑡11

2079
+

2783𝑡10

302400
+

38𝑥𝑡9

2835
+

143𝑡8

2880
+

22𝑥𝑡7

315
+

7𝑡6

12
+

2𝑥𝑡5

15
 

Cancelling out the noise terms in the components, 𝑢0(𝑥, 𝑡) and 𝑢1(𝑥, 𝑡). The exact solution of 

the problem become. 

𝑢(𝑥, 𝑡) = 𝑡2 + 𝑥𝑡                                                       (85) 

Example 4. Consider the following diffusion-convection problem.  

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2 − 𝑢                                                             (86) 

with the initial conditions, 𝑢(𝑥, 0) = 𝑥 + 𝑒−𝑥 

Taking the Laplace transform of both sides of the given equation and invoking the initial 

conditions gives the form. 

𝑢(𝑥, 𝑠) =
𝑥+𝑒−𝑥

𝑠
+

1

𝑠
𝐿 [

𝜕2𝑢

𝜕𝑥2 − 𝑢]                                            (87) 

Taking the inverse Laplace transform of both sides, we obtain. 

𝑢(𝑥, 𝑡) = 𝑥 + 𝑒−𝑥 + 𝐿−1 [
1

𝑠
𝐿 [

𝜕2𝑢

𝜕𝑥2 − 𝑢]]                                  (88) 

Next, we apply the Adomian decomposition procedure, we get the form. 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 

Plugging the above expression into the inverse equation, we have the form. 

∑ 𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = 𝑥 + 𝑒−𝑥 + 𝐿−1 [

1

𝑠
𝐿 [

𝜕2

𝜕𝑥2
(∑ 𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 ) − ∑ 𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 ]]       (89) 

Comparing the coefficients of like powers on both sides, we have  

𝑢0(𝑥, 𝑡) = 𝑥 + 𝑒−𝑥 
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𝑢1(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
𝐿 [

𝜕2𝑢0

𝜕𝑥2
− 𝑢0(𝑥, 𝑡)]] = −𝑥𝑡 

𝑢2(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
𝐿 [

𝜕2𝑢1

𝜕𝑥2 − 𝑢1(𝑥, 𝑡)]] = 𝑥
𝑡2

2!
                                      (90) 

𝑢3(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
𝐿 [

𝜕2𝑢2

𝜕𝑥2
− 𝑢2(𝑥, 𝑡)]] = −𝑥

𝑡3

3!
 

⋮ 

And so on, therefore the series solution is given in the form. 

𝑢(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥 (1 − 𝑡 +
𝑡2

2!
−

𝑡3

3!
+ ⋯ ) 

which converges rapidly to the exact solution given as 

𝑢(𝑥, 𝑡) = 𝑒−𝑥 + 𝑥𝑒−𝑡                                                        (91) 

Example 5. Consider the inhomogeneous nonlinear Klein-Gordon equation. 

𝜕2𝑢

𝜕𝑡2 −
𝜕2𝑢

𝜕𝑥2 + 𝑢2 = −𝑥 cos 𝑡 + 𝑥2 cos2 𝑡                                    (92) 

with the initial condition, 𝑢(𝑥, 0) = 𝑥, 𝑢𝑡(𝑥, 0) = 0 

Taking the Laplace transform of both sides of the given equation subject to the initial condition 

and rearranging gives. 

𝑢(𝑥, 𝑠) =
𝑥

𝑠
−

𝑥

𝑠(1+𝑠2)
+

(2+𝑠2)𝑥2

𝑠3(4+𝑠2)
+

1

𝑠
𝐿 [

𝜕2𝑢

𝜕𝑥2 − 𝑢2]                               (93) 

Taking the inverse Laplace transform gives the expression. 

𝑢(𝑥, 𝑡) = 𝑥 cos 𝑡 −
1

8
𝑥2 cos 𝑡 +

1

4
𝑥2𝑡2 +

𝑥2

8
+ 𝐿−1 [

1

𝑠
𝐿 [

𝜕2𝑢

𝜕𝑥2
− 𝑢2]]                   (94) 

Next, we apply the standard Adomian decomposition procedure, we have. 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0
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Plugging into the given equation gives the expression in terms of the unknown term as. 

∑ 𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = 𝑥 cos 𝑡 −

1

8
𝑥2 cos 𝑡 +

1

4
𝑥2𝑡2 +

𝑥2

8
+ (𝐿−1 [

1

𝑠
𝐿 [

𝜕2

𝜕𝑥2
(∑ 𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 ) −

∑ 𝐴𝑛(𝑢)∞
𝑛=0 ]])                                                 (95) 

where 𝐴𝑛(𝑢) represent the so-called Adomian polynomials. The first few of them are defined as 

𝐴0(𝑢) = 𝑢0
2 

𝐴1(𝑢) = 2𝑢0𝑢1 

𝐴2(𝑢) = 2𝑢0𝑢2 + 𝑢1
2 

𝐴1(𝑢) = 2𝑢0𝑢3 + 2𝑢1𝑢2 

Comparing the coefficients of both sides of the solution term, we have the iterative 

approximations given as 

𝑢0(𝑥, 𝑡) = 𝑥 cos 𝑡 −
1

8
𝑥2 cos 𝑡 + (

𝑥𝑡

2
)

2

+
𝑥2

8
 

𝑢1(𝑥, 𝑡) = 𝐿−1 [
1

𝑠
𝐿 [

𝜕2𝑢0

𝜕𝑥2 − 𝐻0(𝑢)]] =
1

8
𝑥2 cos 𝑡 − (

𝑥𝑡

2
)

2

−
𝑥2

8
+

1

64
cos 2𝑡 + ⋯          (96) 

Cancelling out the noise terms in the 𝑢0(𝑥, 𝑡) and 𝑢1(𝑥, 𝑡), then the remaining terms of 𝑢0(𝑥, 𝑡) 

which satisfies the given problem gives the solution as  

𝑢(𝑥, 𝑡) = 𝑥 cos 𝑡                                                     (97) 

Example 6. Consider the following inhomogeneous nonlinear PDE given as 

𝜕2𝑢

𝜕𝑡2 +
𝜕2𝑢

𝜕𝑥2 + (
𝜕𝑢

𝜕𝑥
)

2

= 2𝑥 + 𝑡4                                        (98) 

with the initial conditions, 𝑢(𝑥, 0) = 0, 𝑢𝑡(𝑥, 0) = 2 
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Taking the Laplace transform of both sides of the given problem subject to the initial condition 

and rearranging gives the resulting expression. 

𝑢(𝑥, 𝑠) =
2

𝑠2 +
2𝑥

𝑠3 +
24

𝑠7 −
1

𝑠2 𝐿 [
𝜕2𝑢

𝜕𝑥2 + (
𝜕𝑢

𝜕𝑥
)

2

]                                      (99) 

Taking the inverse Laplace transform of both sides, we have. 

𝑢(𝑥, 𝑡) = 2𝑡 + 𝑥𝑡2 +
𝑡6

30
− 𝐿−1 [

1

𝑠2 𝐿 [
𝜕2𝑢

𝜕𝑥2 + (
𝜕𝑢

𝜕𝑥
)

2

]]                           (100) 

Next, we apply the Adomian decomposition method by writing the unknown as a series of the 

form. 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

 

Substitution into the above expression gives the expression. 

∑ 𝑢𝑛(𝑥, 𝑡)∞
𝑛=0 = 2𝑡 + 𝑥𝑡2 +

𝑡6

30
− 𝐿−1 [

1

𝑠2 𝐿 [
𝜕2

𝜕𝑥2
(∑ 𝑢𝑛(𝑥, 𝑡)∞

𝑛=0 ) + ∑ 𝐴𝑛(𝑢)∞
𝑛=0 ]]        (101) 

The first few terms of the Adomian polynomials denoted 𝐴𝑛(𝑢) are given by the expressions. 

𝐴0(𝑢) = (
𝜕𝑢0

𝜕𝑥
)

2

= 𝑡4 

𝐴1(𝑢) = 2
𝜕𝑢0

𝜕𝑥

𝜕𝑢1

𝜕𝑥
= 0 

𝐴2(𝑢) = (
𝜕𝑢1

𝜕𝑥
)

2

+ 2
𝜕𝑢0

𝜕𝑥

𝜕𝑢2

𝜕𝑥
= 0 

𝐴3(𝑢) = 2
𝜕𝑢0

𝜕𝑥

𝜕𝑢3

𝜕𝑥
+ 2

𝜕𝑢1

𝜕𝑥

𝜕𝑢2

𝜕𝑥
= 0 
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Comparing the coefficients of like powers of the solution term, the iterative approximations 

become 

𝑢0(𝑥, 𝑡) = 2𝑡 + 𝑥𝑡2 +
𝑡6

30
 

𝑢1(𝑥, 𝑡) = −𝐿−1 [
1

𝑠2 𝐿 [
𝜕2𝑢0

𝜕𝑥2 + 𝐻0(𝑢)]] = −
𝑡6

30
                               (102) 

𝑢2(𝑥, 𝑡) = −𝐿−1 [
1

𝑠2
𝐿 [

𝜕2𝑢1

𝜕𝑥2
+ 𝐻1(𝑢)]] = 0 

⋮ 

𝑢𝑘(𝑥, 𝑡) = 0, 𝑘 ≥ 2 

Therefore, the exact solution of the problem is given as follows. 

𝑢(𝑥, 𝑡) = 2𝑡 + 𝑥𝑡2                                                    (103) 

 

6. Results and Discussion 

Table 1. Comparison between Exact, LADM and HPTM solutions for Example 1 with 𝑡 = 1. 

𝑥     Approximate Solution                                                                 Error Analysis 

Exact 

Solution 

HPTM LADM HPTM LADM 

0.00 1.54308 1.543071 1.543070 0.000009 0.0000010 

0.10 1.64291 1.642900 1.642890 0.000001 0.0000001 

0.20 1.74175 1.741745 1.741744 0.000056 0.0000001 

0.30 1.838591 1.838590 1.838590 0.000009 0.0000001 

0.40 1.93250 1.93249 1.932481 0.000001 0.0000001 

0.50 2.02251 2.02250 2.022500 0.000001 0.0000001 

0.60 2.10772 2.10771 2.107701 0.000001 0.000002 

0.70 2.18730 2.18729 2.187280 0.000001 0.000002 

0.80 2.260400 2.260398 2.260390 0.000049 0.000010 

0.90 2.32640 2.32640 2.326391 0.000001 0.000009 

https://www.eajournals.org/


International Research Journal of Pure and Applied Physics, 10 (1), 24-58, 2023   

                                                                                    ISSN 2055-009X(Print) 

ISSN 2055-0103(Online)  

                                                                            Website: https://www.eajournals.org/                                                        

                         Publication of the European Centre for Research Training and Development -UK 

48 
 

1.00 2.38552 2.385510 2.385509 0.000001 0.0000001 

 

Table 2. Comparison between Exact, LADM and HPTM solutions for Example 2 with 𝑡 = 1 

𝑥 Approximate Solution                                                                           Error Analysis 

Exact 

Solution 

HPTM LADM HPTM LADM 

0.00 0.00000 0.00000 0.000000 0.00000 0.00000 

0.10 2.71828 2.71828 2.71828 0.00000 0.00000 

0.20 3.84423 3.84423 3.84423 0.00000 0.00000 

0.30 4.70820 4.70820 4.70820 0.00000 0.00000 

0.40 5.43656 5.43656 5.43656 0.00000 0.00000 

0.50 6.07826 6.07826 6.07826 0.00000 0.00000 

0.60 6.65840 6.65840 6.65840 0.00000 0.00000 

0.70 7.19190 7.19190 7.19190 0.00000 0.00000 

0.80 7.688460 7.688460 7.688460 0.00000 0.00000 

0.90 8.154850 8.154850 8.154850 0.00000 0.00000 

1.00 8.59596 8.59596 8.59596 0.00000 0.00000 
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Table 3. Comparison between Exact, LADM and HPTM solutions for Example 3 with 𝑡 = 1 

𝑥 Approximate Solution                                                                   Error Analysis 

Exact Solution HPTM LADM HPTM LADM 

0.00 1.0000 1.00000 1.00000 0.00000 0.00000 

0.10 2.0000 2.00000 2.00000 0.00000 0.00000 

0.20 3.0000 3.00000 3.00000 0.00000 0.00000 

0.30 4.0000 4.00000 4.00000 0.00000 0.00000 

0.40 5.0000 5.00000 5.00000 0.00000 0.00000 

0.50 6.0000 6.00000 6.00000 0.00000 0.00000 

0.60 7.00000 7.00000 7.00000 0.00000 0.00000 

0.70 8.0000 8.00000 8.00000 0.00000 0.00000 

0.80 9.0000 9.00000 9.00000 0.00000 0.00000 

0.90 10.0000 10.0000 10.0000 0.00000 0.00000 

1.00 11.0000 11.0000 11.0000 0.00000 0.00000 

 

Table 4. Comparison between Exact, LADM and HPTM solutions for Example 4 with 𝑡 = 1 

𝑥 Approximate Solution                                                               Error Analysis 

Exact Solution HPTM LADM HPTM LADM 

0.00 1.00000 1.00000 1.00000 0.00000 0.00000 

0.10 0.735759 0.735759 0.735759 0.00000 0.00000 

0.20 0.871094 0.871094 0.871094 0.00000 0.00000 

0.30 1.153430 1.153430 1.153430 0.00000 0.00000 

0.40 1.489830 1.489830 1.489830 0.00000 0.00000 

0.50 1.846140 1.846140 1.846140 0.00000 0.00000 

0.60 2.209760 2.209760 2.209760 0.00000 0.00000 

0.70 2.576070 2.576070 2.576070 0.00000 0.00000 

0.80 2.943370 2.943370 2.943370 0.00000 0.00000 

0.90 3.311040 3.311040 3.311040 0.00000 0.00000 

1.00 3.678844 3.678844 3.678844 0.00000 0.00000 
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Table 5. Comparison between Exact, LADM and HPTM solutions for Example 5 with 𝑡 = 1 

𝑥            Approximate Solution                                              Error Analysis 

Exact 

Solution 

HPTM LADM HPTM LADM 

0.00 0.00000 0.00000 0.00000 0.000000 0.000000 

0.10 0.054032 0.054032 0.054032 0.000000 0.000000 

0.20 0.108060 0.108060 0.108060 0.000000 0.000000 

0.30 0.162091 0.162091 0.162091 0.000000 0.000000 

0.40 0.216121 0.216121 0.216121 0.000000 0.000000 

0.50 0.270151 0.270151 0.270151 0.000000 0.000000 

0.60 0.324181 0.324181 0.324181 0.000000 0.000000 

0.70 0.378211 0.378211 0.378211 0.000000 0.000000 

0.80 0.432242 0.432242 0.432242 0.000000 0.000000 

0.90 0.486272 0.486272 0.486272 0.000000 0.000000 

1.00 0.540302 0.540302 0.540302 0.000000 0.000000 

 

Table 6. Comparison between Exact, LADM and HPTM solutions for Example 6 with 𝑡 = 1 

𝑥            Approximate Solution                                                 Error Analysis 

Exact 

Solution 

HPTM LADM HPTM LADM 

0.00 0.00000 0.00000 0.00000 0.000000 0.000000 

0.10 0.054032 0.054032 0.054032 0.000000 0.000000 

0.20 0.108060 0.108060 0.108060 0.000000 0.000000 

0.30 0.162091 0.162091 0.162091 0.000000 0.000000 

0.40 0.216121 0.216121 0.216121 0.000000 0.000000 

0.50 0.270151 0.270151 0.270151 0.000000 0.000000 

0.60 0.324181 0.324181 0.324181 0.000000 0.000000 

0.70 0.378211 0.378211 0.378211 0.000000 0.000000 

0.80 0.432242 0.432242 0.432242 0.000000 0.000000 

0.90 0.486272 0.486272 0.486272 0.000000 0.000000 

1.00 0.540302 0.540302 0.540302 0.000000 0.000000 
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Figure 1. 3D plot of Example 1 for 0 ≤ 𝑥 ≤ 10, 0 ≤ 𝑡 ≤ 8 

 

    Figure 2. 3D plot of Example 1 for 0 ≤ 𝑥 ≤ 10, 0 ≤ 𝑡 ≤ 8 
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     Figure 3. 3D plot of Example 3 for 0 ≤ 𝑥 ≤ 10, 0 ≤ 𝑡 ≤ 8 

 

Figure 4. 3D plot of Example 4 for 0 ≤ 𝑥 ≤ 10, 0 ≤ 𝑡 ≤ 8 
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       Figure 5. 3D plot of Example 5 for 0 ≤ 𝑥 ≤ 10, 0 ≤ 𝑡 ≤ 8 

 

      Figure 6. 3D plot of Example 6 for 0 ≤ 𝑥 ≤ 10, 0 ≤ 𝑡 ≤ 8 

7. Conclusion 
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In this research article, we presented a modification of the famous Adomian decomposition 

standard homotopy permutation method by coupling them with Laplace transform method for 

solving nonlinear partial differential equations frequently encountered in the physical sciences. In 

these methods, the nonlinear terms are obtained using the so-called Adomian polynomials and 

He’s polynomials which overcome the inherent deficiency of the inability of Laplace transform 

method to treat nonlinear problems. The proposed technique is implemented to solve the linear 

and nonlinear Kleidon-Gordon equations, linear transverse equation of a vibrating beam, 

homogeneous and inhomogeneous nonlinear PDEs, advection equation, diffusion-convection and 

KDV equation respectively. From the considered problems, the presented techniques prove 

effective and generated numerical results which converges rapidly to the closed form solution. The 

findings also revealed that, all the nonlinear PDEs produced the noise terms, whereas they are 

absent for the linear PDEs.  

References 

[1] Evans, L. C. (2010). Partial Differential Equations. American Mathematical Society. 

[2] Friedman, A. (2014). Partial Differential Equations of Parabolic Type. Dover 

Publications. 

[3] Strauss, W. A. (2007). Partial Differential Equations: An Introduction. John Wiley & 

Sons. 

[4] Zeidler, E. (2013). Nonlinear Functional Analysis and its Applications: III: Variational 

Methods and Optimization. Springer. 

[5] Olver, P. J. (2014). Introduction to Partial Differential Equations. Springer. 

[6] L.C. Evans. (1998). Partial Differential Equations. Graduate Studies in Mathematics, 

Volume 19. American Mathematical Society. 

[7] L. Ebiwareme (2021). Numerical Investigation of the Burgers-Fisher and FitzHugh-Nagumo 

Equations by Temimi and Ansari method. International Journal of Applied Science and 

Mathematical Theory, Volume 7, No. 22, 2021 

https://www.eajournals.org/


International Research Journal of Pure and Applied Physics, 10 (1), 24-58, 2023   

                                                                                    ISSN 2055-009X(Print) 

ISSN 2055-0103(Online)  

                                                                            Website: https://www.eajournals.org/                                                        

                         Publication of the European Centre for Research Training and Development -UK 

55 
 

[8] L. Ebiwareme (2022). A comparative study between semi-analytical iterative schemes for 

the reliable of systems of coupled nonlinear partial differential equations. International 

Journal of Innovation Engineering and Science Research, Volume 6, Issue 1, January-

February 2022. 

[9] L. Ebiwareme (2021). Application of Semi-analytical iteration techniques for the numerical 

solution of linear and nonlinear differential equations. International Journal of Mathematics 

Trends and Technology, Volume 67, Issue 2, 146-158. 

[10] Roohani, H. G., Abbasbandy, S., Soltanalizadeh, B. (2012). Analytical solution of the slip 

Magnetohydrodynamic viscous flow over a stretching sheet by using Laplace-Adomian 

decomposition method. Z. Naturforsch, 67a, 248-254. 

[11] L. Ebiwareme (2022). The Laplace transform decomposition method applied to the 

numerical solution of the food chain ecoepidemic model. International Journal of Statistics 

and Applied Mathematics, 7(1): 132-145. 

[12] L. Ebiwareme, R. E. Akpodee, R. I. Ndu (2022). An Application of LADM-Padé 

Approximation for the Analytical Solution of the SIR Infectious Disease Model. 

International Journal of Innovation Engineering and Science Research 

Volume 6, Issue 2, March-April 2022. 

[13] L. Ebiwareme (2022). Analytical Study of the Hepatitis E Virus Model (HEV) Via Hybrid 

Semi-Analytical Laplace Transform and Adomian Decomposition 

Method (LADM). International Journal of Scientific Research and Engineering 

Development-– Volume 5 Issue 1, Jan-Feb 2022. 

[14] L. Ebiwareme (2022). Analytical Solution of the Dynamics of atmospheric C02 Using the 

LADM-Pade Approximation Approach. International Journal of Trend in Scientific 

Research and Development, Volume 6 Issue 2, January-February 2022. 

[15] L. Ebiwareme, Y. A. Da-Wariboko (2021). Modified Adomian Decomposition Method and 

Padé Approximant for the Numerical Approximation of the Crime 

Deterrence Model in Society. International Journal of Engineering and Science, Volume 10, Issue 

7, Series 1, PP01-12. 

https://www.eajournals.org/


International Research Journal of Pure and Applied Physics, 10 (1), 24-58, 2023   

                                                                                    ISSN 2055-009X(Print) 

ISSN 2055-0103(Online)  

                                                                            Website: https://www.eajournals.org/                                                        

                         Publication of the European Centre for Research Training and Development -UK 

56 
 

[16] L. Ebiwareme 1, F. P. Kormane, E. O. Odok (2021). Simulation of unsteady MHD flow of 

incompressible fluid between two parallel plates using Laplace-Adomian decomposition 

method. World Journal of Advanced Research and Reviews, 2022, 14(03), 136–145. 

[17] Abbasbandy, S. (2006). The application of homotopy perturbation method to nonlinear 

equations arising in heat transfer. Physics Letters A, 360(1), 109-113. 

[18] Jafari, H., & Daftardar-Gejji, V. (2006). Solving a system of nonlinear fractional 

differential equations using homotopy perturbation method. Journal of Computational and 

Applied Mathematics, 207(1), 24-34. 

[19] Ji-Huan, He. (2003). Homotopy perturbation method: a new nonlinear analytical technique, 

Applied Mathematics and Computation 135, 73-79. 

[20] Ji-Huan, He. (2009). An elementary introduction to the homotopy perturbation method, 

Computers and Mathematics with Applications 57, 410412. 

[21] Parivash Shams Derakhsh, Jafar Biazar (2013). The Existence of Noise Terms for Systems 

of Partial Differential, and Integral Equations with (HPM) Method Mathematics and 

Statistics 1(3), 113-118. 

[22] J. Biazar and H. Ghazvini (2007). Solution of the Wave Equation by Homotopy Perturbation 

Method, International Mathematical Forum, 2, no. 45, 2237 - 2244 

[23] Changbum Chuna, Hossein Jafari, Yong-Il Kim, (2009). Numerical method for the wave and 

nonlinear diffusion equations with the homotopy perturbation method, Computers and 

Mathematics with Applications 57, 1226-1231. 

[24] A. Sadighi, D.D. Ganji, (2007). Exact solutions of Laplace equation by homotopy-

perturbation and Adomian decomposition methods, Physics Letters A 367, 83-87. 

[25] Asghar Ghorbani, Jafar Saberi-Nadjafi, (2007). He's Homotopy Perturbation Method for 

Calculating Adomian Polynomials International Journal of Nonlinear Sciences ansd 

Numerical Simulation, 8(2), 229-232. 

https://www.eajournals.org/


International Research Journal of Pure and Applied Physics, 10 (1), 24-58, 2023   

                                                                                    ISSN 2055-009X(Print) 

ISSN 2055-0103(Online)  

                                                                            Website: https://www.eajournals.org/                                                        

                         Publication of the European Centre for Research Training and Development -UK 

57 
 

[26] Yasir Khan Qingbiao Wu, (2011). Homotopy perturbation transform method for nonlinear 

equations using He’s polynomials, Computers and Mathematics with Applications, 61 1963-

1967. 

[27] Mostafa Eslami and Jafar Biazar, (2014). Analytical solution of the Klein-Gordon Equation 

by A New homotopy perturbation method, computational mathematics and modeling, Vol. 

25, No. 1, 

[28] N. Taghizadeh, M. Akbari, A. Ghelichzadeh, (2011). Exact Solution of Burgers Equations by 

Homotopy Perturbation Method and Reduced Differential Transformation Method, 

Australian Journal of Basic and Applied Sciences, 5(5): 580-589, ISSN 1991-8178. 

[29] A. Sadighi, D.D. Ganji, (2008). Analytic treatment of linear and nonlinear Schrödinger 

equations: A study with homotopy-perturbation and Adomian decomposition methods, 

Physics Letters A 372, 465-469. 

[30] Ahmet Yildirim, (2009). on the solution of the nonlinear Korteweg–de Vries equation by the 

homotopy perturbation method, Commun. Numer. Meth. Engng, 25:1127-1136. 

[31] Ahmet Yildirim, (2008). The Homotopy Perturbation Method for Solving the Modified 

Korteweg-de Vries Equation, Z. Naturforsch. 63a, 621- 626. 

[32] L. Ebiwareme, K. W. Bunonyo, (2022). A New Homotopy perturbation-Sumudu Transform 

method Applied to Physical Models. International Research Journal of Modernization in 

Engineering Technology and Science, volume 4, Issue 11, November-2022. 

[33] L. Ebiwareme, F. P. Kormane (2022). A variational Homotopy Perturbation method 

approach to the nonlinear equations governing MHD Jeffery-Hamel flow in the presence of 

magnetic field. American Journal of Engineering Research, Volume-11, Issue-02, pp-81-89. 

[34] L. Ebiwareme, K. W. Bunonyo, O. A. Davies (2023). Homotopy Perturbation method for 

MHD Heat and Mass transfer flow of convective fluid through a vertical porous plate in the 

presence of chemical reaction and inclined magnetic field. Earthline Journal of Mathematical 

Sciences, Volume 13, Number 1, Pages 209-233. 

 

https://www.eajournals.org/


International Research Journal of Pure and Applied Physics, 10 (1), 24-58, 2023   

                                                                                    ISSN 2055-009X(Print) 

ISSN 2055-0103(Online)  

                                                                            Website: https://www.eajournals.org/                                                        

                         Publication of the European Centre for Research Training and Development -UK 

58 
 

 

https://www.eajournals.org/

