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Abstract: Structural Equation Modeling (SEM) is a comprehensive multivariate statistical technique that 

permits the testing of complex theoretical models involving observed and latent variables. This article reviews 

the foundational principles and assumptions of SEM and outlines the practical steps for conducting SEM 

analysis using SPSS AMOS. As well, it presents implications to research and practice utilizing SEM, as well as 

directions for future research with the technique, with particular emphasis on social science fields. An example 

using a real data set is used to demonstrate how to construct a model, interpret path coefficients, evaluate model 

fit, and ensure that SEM assumptions are met. While the data used here are real, the emphasis remains on 

understanding the SEM framework and enhancing methodological rigor in research applications. 
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INTRODUCTION 

 

Structural Equation Modeling (SEM) has emerged as a cornerstone of empirical research across disciplines such 

as psychology, sociology, education, social work, and business. SEM integrates elements of multiple regression, 

path analysis, and factor analysis into a unified framework for testing complex theoretical models (Kline, 2016; 

Hoyle, 2012). It provides researchers with the tools to model latent constructs, test measurement validity, and 

evaluate hypothesized causal relationships simultaneously.  

 

Unlike traditional multivariate methods, SEM accounts for measurement error and supports the estimation of 

both direct and indirect effects (Byrne, 2016). Given its theory-driven nature, careful model specification is 

essential to the integrity of SEM analyses. This paper reviews the core SEM assumptions and procedures, 

highlights model evaluation strategies, and demonstrates the practical implementation of SEM using SPSS 

AMOS. 

 

Literature/Theoretical Underpinning 

The origins of SEM date indirectly back to Charles Spearman’s work on general intelligence, in which he 

designed the first factor analysis by creating a two-factor model to measure human beings’ cognitive abilities 
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(Spearman, 1904).  However, the works of Sewall Wright (1918) directly concern SEM, as he developed a path 

diagram to estimate the effect between variables – whether direct, indirect, or a total effect – and he showed the 

correlation between the variables and their links to the model parameters. The work began out of researchers’ 

need to produce analyses for complex relationships, particularly, those that pertain to abstract or latent concepts, 

which cannot be directly measured, in contrast to manifest or observable variables.  

 

Some examples of latent variables include mental health, life satisfaction, attitudes, burnout levels, and well-

being. The importance of accurately measuring these concepts cannot be over-emphasized. Because these 

concepts are abstract in nature, they are not directly observable in the physical world (Dijkstra & Henseler, 

2015). As such, they cannot be directly measured either. Handling an abstract concept or event as though it were 

concrete is a reification error (Levy, 2010). Therefore, to avoid this error in reasoning, it is vital to create 

instruments that can measure observable indicators for these types of variables. SEM is ideal for its capability 

to address latent variables and avoid error.  

 

In addition to SEM, the analysis is known by various names including Jöreskog & Sörbom’s LISREL (LInear 

Structural RELationships) or structural equations with latent variables, which accounts for measurement error 

in observed variables; covariance structure models, which estimates the relationships between variables; and 

latent variables models, a model that contains unobserved variables.  

 

Purpose 

SEM is a sophisticated, iterative method whose purpose is to develop a set of equations that analyze observable 

or manifest and latent variables to produce a causal path diagram to help explain complex social phenomena 

(Tarka, 2022). Kaplan (2000, p. 1) defines the technique in this way: “structural equation modeling can perhaps 

best be defined as a class of methodologies that seeks to represent hypotheses about the means, variances and 

covariances of observed data in terms of a smaller number of ‘structural’ parameters defined by a hypothesized 

underlying model.”  

 

SEM can also be understood more simply as a system of linear equations, a characterization that underlies the 

alternative term LISREL—LInear Structural RELations (Nachtigall et al., 2003). As an advanced multivariate 

technique, SEM is comprised of two interrelated components: the measurement model and the structural model 

(Kaplan, 2001). The measurement model shows the covariance between the different factors, identifying each 

factor and its corresponding indicators, while the structural model specifies the directions between the latent 

variables. Combined, these two models merge multiple analyses to develop the path diagram. SEM's strength 

lies in its ability to test entire models simultaneously rather than in isolated steps. 

 

SEM proposes a system consisting of the varying relationships between multiple independent variables and 

multiple dependent variables, rather than a single bivariate relationship or even a single multivariate relationship 

that only involves either one independent variable or one dependent variable. These variables are those that are 

most subject to error, such as latent variables that rely on test construction due to their abstract nature. These 

are variables that are seen most often in social science research. SEMs are able to serve the following additional 

purposes: 

 estimate relationships between these abstract concepts corrected for measurement error to get structural 

parameters; 

 estimate the nature of measurement error in observed variables; 

 answer research questions that assess the effect of mediators on an indirect relationship; 

 allow multiple indicators of the same concept; 

 assess reliability and validity of measures;  

 allow new tests of fit of systems of equations; 

 allow measurement errors to be correlated. 
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Key Features of SEM 
Key features of SEM include a classical measurement model, mediating factors, and graphical representation. 

A classical measurement model of SEM is X=T+E, in which “X” represents the observed indicator or measured 

variable; “T” represents the true score; and “E” represents error.  It is assumed that because “X” is a latent 

variable that originally was not observable, development of a measurement that consists of observable indicators 

might include some errors.  For example, perhaps, when responding to the measurement items, the study 

participant was sleepy or hungry; perhaps, the individual was distracted or needed to rush through the survey to 

attend to other business; perhaps, the respondent gave an answer that seemed socially desirable to the surveyor; 

perhaps, the questions on the survey were unclear; or perhaps, the individual simply made a mistake in 

responding.  These types of errors can be classified as either systematic or random.  In either case, the responses 

given might not be an accurate reflection of the person’s true feelings regarding the measurement.  The 

overarching idea is that the measurement is likely to include the participants’ true score as well as some error.  

This is accounted for in the model. 

 

Another key characteristic of SEM is its use of mediators to better specify more complex, causal theories.  

Mediating variables are useful for explaining the process of a relationship when an indirect relationship might 

exist between variables.  In doing so, a causal chain explains how the independent variable impacts the 

dependent variable but through its influence on the mediating variable, as the mediator is the more proximal 

cause of the outcome.   

 

SEM uses path diagrams to show the systems of relationships between sets of variables. Manifest variables are 

typically represented by squares or rectangles with the letter “x” and a number following, while latent variables 

are typically represented by circles or ellipses with the eta symbol inside followed by a number; error variance 

is usually represented using circles with the letter “e” and a number following. (Other types of variables may 

be included in the system as well, such as exogenous variables and endogenous variables). A covariance path is 

usually represented by a curved double-headed arrow to indicate a bi-directional correlation between the 

variables, and a single-headed, straight arrow implies a directional, causal relationship in the model. See figure 

1 of a path diagram. 

 

 
Figure 1. Path diagram 

 

Types of SEM 

Structural equation modeling (SEM) encompasses a range of analytical approaches that vary in complexity and 

purpose. The following outlines the primary types of SEM commonly used in empirical research. 

1. Confirmatory Factor Analysis (CFA): Evaluates the extent to which observed variables accurately 

reflect their underlying latent constructs. 

2. Path Analysis: Examines the directional relationships among observed variables to test hypothesized 

causal pathways. 

https://www.eajournals.org/
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3. Full Structural Equation Modeling (SEM): Integrates CFA and path analysis to assess complex 

relationships among both latent and observed variables within a unified framework. 

 

Definitions 

A clear understanding of SEM requires familiarity with its key terms. The following definitions outline these 

terms that underline the construction, interpretation, and evaluation of SEM models, particularly within the 

context of social science research. The following definitions provide a concise reference for the principal 

components and terminology associated with SEM: 

1. Observed or manifest variables: Variables that can be directly measured or items on a scale that serve 

as observed indicators.  

2. Latent or abstract variables: Variables which cannot be directly measured because they are not directly 

observable but instead, requires observable indicators. 

3. Indicator: Observable items combined to indirectly measure latent variables. 

4. Endogenous variables: They are dependent variables, or those influenced by other variables in the 

system. 

5. Exogenous variables: They are completely independent of others but influence the outcomes in the 

model. 

6. Model: It is a mathematical representation or statistical statement of observed data, depicting the 

relationships between variables. 

7. Measurement model: It operationalizes the theoretical concepts through confirmatory factory analysis 

by delineating the relationships between manifest variables and their corresponding latent variables.  

8. Structural model: It defines causal relationships between the latent variables through a path diagram 

that depicts the constructs’ influence on each other. 

9. Path diagram: It is a visual representation of causation, showing variables’ hypothesized 

interconnectedness within a complex system. 

10. Path coefficients: They are standardized regression coefficient (beta), indicating the direct effect an 

independent variable has on a dependent variable. 

11. Direct effects: It is a causal relationship between two variables, measured directly through a straight-

line or single path in the model, while holding all other variables constant. 

12. Indirect effects: It is the pathway through a mediating variable that creates a relationship between the 

independent variable and the dependent variable that previously did not exist in the absence of the 

mediator. 

13. Errors: They are variances that are not attributed to the variables itself but other factors. 

14. Model specification: It is a definition of the hypothesized relationships by determining which variables 

will be included in the regression equation. 

 

Research Questions and Hypothesis 

Because SEM is composed of a variety of analyses, it is appropriate for addressing a number of research 

questions, including those that pertain to the relationships between latent variables as well as relationships that 

are formed through indirect effects, including mediation and moderation.  

 

The overarching question being asked with an SEM is: “Does the model produce an estimated population 

covariance matrix that is consistent with the sample (observed) covariance matrix?”  The hypothesis for this 

question is that there is a significant difference between the observed covariance matrix (obtained from the 

sample) and the implied covariance matrix (observed in the population). The researcher should seek not to reject 

the null hypothesis, which would suggest that the observed covariance matrix and the implied covariance matrix 

are not statistically significantly different.  

 

Several questions that might subsequently be asked to address this primary question include the following:  
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1. What are the causal relationships between multiple latent variables? Otherwise asked, how do latent 

variables influence other latent variables within a system?  

2. A question pertaining to the relationship between latent variables can be the following: What is the 

correlation between the latent variables?  

3. Mediation questions might take the following form: How does Z mediate the relationship between X 

and Y?  

4. Moderation questions, on the other hand, might ask: Is Y strengthened when Z is combined with X? 

 

Assumptions of SEM 

Structural equation modeling relies on several key assumptions to ensure accurate and valid results. Violations 

can impact estimates and model fit, so it is important to assess these assumptions before interpreting findings. 

Below are the main assumptions and common methods to evaluate them: 

1. Level of measurement: Independent and dependent variables can be categorical (nominal or ordinal) 

and continuous (interval or ratio) data (Abu-Bader, 2021). 

2. Linearity: The endogenous (dependent) and exogenous (independent) variables should have a linear 

relationship, meaning that the data points form a straight line – whether increasing, decreasing, or 

remaining constant – and thus indicating that as one variable changes, the other variable changes 

proportionally. Linearity is evaluated by a scatterplot (Abu-Bader, 2021; West, Finch, & Curran, 1995). 

3. Multicollinearity: SEM requires that multicollinearity is minimal and can be detected by using 

Variance Inflation Factor (VIF) and tolerance values. Multicollinearity occurs when exogenous 

variables have high intercorrelations, indicating that the items being used to operationalize the 

variables are too similar to distinguish between each variable’s individual contribution. This 

assumption can be assessed through a correlation matrix, VIF, and tolerance values (Abu-Bader, 

2010).  

4. Univariate normality: Individual variables should be normally distributed. It can be evaluated by 

inspecting histograms, normality plots, and normality tests (Abu-Bader, 2021). 

5. Multivariate normality: Multiple variables in a set should be normally distributed. Normal distribution 

for both univariate and multivariate normality should be assessed using histograms, q-q plots, skewness, 

kurtosis, and statistical tests, and data should be transformed if warranted. Normality can be tested using 

Mardia's coefficient (Mardia, 1970). 

6. Independence of observations: Observations should be independent of each other, meaning that no data 

collected from one individual should impact the data collected from another individual (Preacher, 

Zyphur, & Zhang, 2010). 

7. Missing data: Data should be complete, and where there is missing data, it should be random. Because 

missing data can impact the model’s estimate, missing data can be addressed using the Full Information 

Maximum Likelihood (FIML) or Multiple Imputation (MI) techniques (Enders, 2010). 

8. No Measurement Error in Exogenous Variables: Traditional regression assumes no error in predictors, 

but SEM allows modeling of measurement error, improving validity (Bollen, 1989). 

9. Sample size: Because of the potential risk of type I and type II errors, SEM requires that the sample 

size be sufficiently large, with general recommendations ranging between 200-400 observations and 

10-15 indicators per variable (Boomsma, 1982; Wolf et al., 2013). In general, the following parameters 

should be followed when determining sample size: 50 equals very poor; 100 equals poor; 200 equals 

fair; 300 equals good; 500 equals very good; and 1,000 equals excellent. 

10. Model Identification: A model must be identified to be estimated. Each latent variable should be 

measured by at least three indicators (Brown, 2015). 

11. Correct Model Specification: Models must be theoretically grounded. Misspecification can lead to 

biased estimates and poor fit (MacCallum et al., 1992). 

12. Outliers: An outlier is an observation that significantly deviates – either much larger or much smaller – 

from other values in a dataset (Jenatabadi, 2015), 
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13. Non-spuriousness: The observed covariance between variables must indicate a causal relationship, such 

that no other variable influences the outcome (Bollen, 2013) 

14. Sequence and Causality: A causal relationship between endogenous and exogenous variables must be 

established, such that the cause precedes the effect (Bollen, 2013). 

 

METHODOLOGY 

 

SEM consists of five logical steps, including model specification, model identification, parameter estimation, 

model fit evaluation, and model modification (Fan et al., 2016). Below, each step is described. 

 

Model Specification: Model specification defines the hypothesized relationships by determining which 

relevant variables will be included in the regression equation. These hypotheses should be grounded in prior 

empirical research, based on a thorough literature review, and theoretical underpinnings. To conduct this step, 

the latent variables and their corresponding indicators should be identified. Structural relationships between the 

latent variables should be defined, with a path diagram representing the hypothesized relationships through 

directional arrows.  

 

Model Identification: Next, model identification assesses if there is enough information to identify a unique 

solution for the model’s parameters. The model can be under-identified, just-identified, or over-identified 

(Kenny, 2024). As reported by Fan (2016, p. 8), Kline (2010) states the following regarding model identification: 

“(1) ‘the model degrees of freedom must be at least zero to assure the degrees of freedom (df) is greater than 

zero; (2) ‘every latent variable (including the residual terms) must be assigned a scale, meaning that either the 

residual terms’ (disturbance) path coefficient and one of the latent variable’s factor loading should be fixed to 1 

or that the variance of a latent variable should be fixed to 1’; and (3) ‘every latent variable should have at least 

two indicators.’   

 

While an over-identified model contains ample information to estimate the model parameters, a just-identified 

model reflects a perfect fit that will reflect the observed data and contains only enough information to estimate 

the model parameters. By contrast, an under-identified model refers to one that does not contain enough unique 

solutions for the parameter; in essence, there is a lack of information, and consequently, the model cannot be 

estimated.  

 

Parameter Estimation: The third step consists of parameter estimation, estimating the unknown parameters, 

or betas, in the model which can be determined through maximum likelihood estimation (Fan et al., 2016). This 

requires determining the maximum likelihood of choosing parameters that represent data that we would observe 

in the population. Otherwise stated, multivariate normality must be assessed for continuous distributions 

(Nachtigall et al., 2003). One benefit of maximum likelihood estimation is that, as the sample size increases, it 

will yield an efficient and unbiased estimate (Kaplan, 2001). The model must be either over-identified or just-

identified in order for model coefficients to be estimated. 

 

Model Fit: Next, the model fit must be evaluated to determine the data’s reproducibility or how well the model 

fits the data. This is achieved by determining the degree of closeness between the theory and reality, or the 

estimated covariance matrix and the observed covariance matrix, respectively, such that the data is reproducible 

(Bhale & Bedi, 2023; Kenny, 2024). Model fit allows for comparisons between models to determine which one 

most closely conforms to the data actually observed in the field. To determine if empirical data supports the 

model, there must be an acceptable fit between the assumed dependencies between the latent variables and the 

assumed relationships between the manifest and latent variables (Nachtigall et al., 2003). Because the latent 

variables, in and of themselves, are not measurable, observed indicators used to operationalize the independent 

variables are associated with the observed indicators of the dependent variables through the loadings of the 
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measures on their corresponding latent factors. To determine if the model showing patterns of associations 

reasonably reflects the actual associations that we observe in our empirical data, we can use model fit tests.  

 

Fit Indices: In SEM several tests can be used. One test that assesses exact fit is the standardized root mean 

squared residual (SRMR). Values less than .05 represent good fit, while values less than .08 represent an 

acceptable fit (Hu & Bentler, 1999; Pavlov, Maydeu-Olivares, & Shi, 2021).  A traditional and notable test is 

the chi-square test of model fit (CMIN). The chi-square test will show a non-significant result if the model is a 

good fit (p > .05), small value, and small degrees of freedom, supporting the null hypothesis that the matrices 

are not statistically significantly different. By contrast, if the null hypothesis is rejected, then the model will 

indicate that the matrices are not equal and represent a poor fit (Bhale & Bedi, 2023). This analysis is sensitive 

to sample size and will likely reject the null hypothesis with large sample sizes (Hooper et al, 2008). While this 

test assesses exact model fit, the normed chi-square test adjusts χ² for model complexity. Less than 3.0 is 

considered acceptable, while less than 2.0 represents good fit (Schermelleh-Engel et al., 2003).  

 

As an alternative to the chi-square test, Jöreskog and Sorbom’s (1993) goodness of fit index (GFI) indicates 

how well theoretical model represents the actual data by calculating the proportion of variance in the observed 

covariance matrix that is accounted for by the estimated covariance matrix. The GFI summarizes the overall fit. 

With values ranging between 0 and 1, a GFI closer to 0 represents a poor fit, while a value closer to 1 represents 

a good fit. A value greater than .95 is optimal (Hooper et al., 2008). Similarly, the adjusted goodness of fit index 

(AGFI), which considers the degrees of freedom of a model in relation to the number of variables and prevents 

over-fitting, also suggests that values closer to 1 (>.90), represent a good-fitting model. Both of these indices 

are also sensitive to sample size – the AGFI increasing with larger sample sizes – and although their use has 

been discouraged (Sharma et al, 2005), others recommend continuing their use along with other indices, rather 

than as a standalone measure (Hooper, 2008). 

 

Accommodating for large sample sizes and data complexity, the root mean square error of approximation 

(RMSEA) – one of the most widely used measures of model fit – is used to approximate a close fit in contrast 

to an exact fit (Kaplan, 2000). The following values represent the interpretation of fit: 0 = perfect fit, .05 = 

good fit, .05 - .08 = fair fit, >.10 = poor fit. 

 

The incremental fit index (IFI) places the researcher’s model on a continuum of fit, from best fit (1) to worst 

possible fit (0) (Kenny, 2024). The simplest IFI – the normed fit index (NFI) – adjusts for the sample size and 

degrees of freedom and compares the null model to the baseline model (Bollen, 1989; Schmukle & Hardt, 2005). 

A value of one equals an ideal fit; >1 equals an overfit; <.9 suggests that improvement is needed. Hu and Bentler 

(1999) adjusted the standard of excellent fit to a value of <.95 but have also suggested that interpretations should 

consider model complexity and sample size, allowing for a value of .9 to be suitable. To prevent underestimation 

of fit that might be noted in small sample sizes for this index, the comparative fit index (CFI) can be used 

(Bentler, 1990). This index, which compares the theoretical model with data, should result in a value of  .90 

for a good fit, with a value of 1 equaling a perfect fit. Another IFI, but non-normed, is the Tucker-Lewis Index 

(TLI), which compares the fit of a given substantive model against a null model (Cai et al., 2021). This index 

has a penalty for adding parameters (Kenny, 2024). Because higher values suggest a better fit, as 1 equals ideal 

fit; >1 equals overfit, and <.9 equals poor fit. 

 

Lastly, parsimony-adjusted fit indices (PRATIO) provide information about model fit relative to model 

complexity. Otherwise stated, when multiple explanations for fitting a wide range of observed data exist, the 

simplest model is usually the best fit; this conclusion harkens to Occam’s Razor, which proposes that the 

simplest explanation is usually the correct one (Falk & Muthukrishna, 2021). While there are no universally 

accepted cutoff values for PNFI and PCFI, higher values indicate a better balance between model fit and 

parsimony (Mulaik et al., 1989). A chi-square test that also assesses parsimony is probability of close fit 
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(PCLOSE). Values above .05 – the null hypothesis – represents a close fit (MacCallum et al., 1996; 

Madhanagopal & Amrhein, 2019). 

 

When determining which index to report, if all (or most) indices lead to the same conclusion, report one or more 

indices based on your preference or the journal’s preference. If the results are inconsistent, re-examine and 

analyze the model. If inconsistency continues, report multiple indices. Table 1 presents widely used fit indices, 

their interpretations, recommended cutoff criteria, and authoritative sources, offering a comprehensive guide 

for evaluating SEM results in applied research. 

 

Fit Index Interpretation Recommended 

Cutoff 

Reference 

Chi-Square (χ²) - Chi-Square 

Test of Model Fit 

Tests exact model fit Non-significant (p > 

.05) 

Kline (2016) 

Chi-Square/df (Normed χ²) Adjusts χ² for model 

complexity 

< 3.0 (acceptable); < 

2.0 (good) 

Schermelleh-Engel et al. 

(2003) 

CFI (Comparative Fit Index) Compares target 

model to null model 

≥ .90 (acceptable); ≥ 

.95 (good) 

Hu & Bentler (1999) 

TLI (Tucker-Lewis Index) Penalizes complex 

models 

≥ .90 (acceptable); ≥ 

.95 (good) 

Hu & Bentler (1999) 

NFI (Normed Fit Index) Compares model to 

null model 

≥ .90 (acceptable) Bentler & Bonett (1980) 

SRMR - Standardized Root 

Mean Square Residual 

Average standardized 

residuals 

≤ .08 (acceptable); ≤ 

.05 (good) 

Hu & Bentler (1999) 

RMSEA - Root Mean Square 

Error of Approximation 

Measures fit per 

degree of freedom 

≤ .08 (acceptable); ≤ 

.06 (good) 

Hu & Bentler (1999); 

Browne & Cudeck (1993) 

PCLOSE - Probability of 

Close Fit 

Tests if RMSEA ≤ .05 

(close fit) 

p > .05 indicates 

close fit 

MacCallum et al. (1996) 

GFI - Goodness-of-Fit Index Proportion of variance 

explained 

≥ .90 (acceptable) Jöreskog & Sörbom 

(1984) 

AGFI - Adjusted Goodness-

of-Fit Index 

GFI adjusted for 

model complexity 

≥ .90 (acceptable) Jöreskog & Sörbom 

(1984) 

PNFI - Parsimony Normed Fit 

Index 

NFI adjusted for 

parsimony 

No strict cutoff; 

higher is better 

Mulaik et al. (1989) 

PCFI - Parsimony 

Comparative Fit Index 

CFI adjusted for 

model parsimony 

No strict cutoff; 

higher is better 

Mulaik et al. (1989) 

Table 1. SEMs Fit Indices 

 

Model Modification: Finally, model modification requires adjustments to be made to the model to improve its 

fit. To adjust the model, paths can be added or removed. Additionally, model re-specification can be used to 

improve the fit. To maintain theoretical integrity, modifications should be based on theory. To conduct this step, 

there are two approaches that can be used: (1) releasing constraints, also considered as “forward search,” 

consists of adding free parameters; and (2) imposing constraints, also considered as “backward search,” consists 

of deleting free parameters.  

 

RESULTS 

 

This paper conducts path analysis using SPSS AMOS, a widely used software for SEM that provides a graphical 

interface to draw and estimate models. The program provides intuitive tools for drawing, estimating, and 

interpreting SEMs, making it accessible for researchers at various levels. The dataset, Job Satisfaction, was 

collected by the first author as part of research on job behavior among social service employees. It comprises 
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responses from a random sample of 218 individuals employed in social services agencies, who completed a 

self-administered survey that included well-known and validated scales measuring various job behaviors and 

job-related facets, along with demographic and personal characteristics (Abu-Bader, 2021). The following steps 

outline the SEM procedure in AMOS (Arbukle, 2017): 

 

Step 1: Specify the Model 

 Use the SPSS AMOS draw tool (figure 2) to represent observed variables (rectangles) and latent 

variables (oval). 

 

 
Figure 2. SPSS AMOS Main Screen 

 Define causal paths using directional arrows and covariances using two-headed arrows (figure 3). 

 Ensure that identification rules are met (e.g., one fixed loading per latent variable). 

 

Step 2: Load the Dataset 

 Import the dataset from SPSS (figure 2 icon 6). 

 Assign variables by double-clicking on each box in the diagram. 

 
Figure 3. Path Diagram with Estimated Parameters – Input  

https://www.eajournals.org/
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Step 3: Estimate the Model 

 Use Maximum Likelihood estimation or robust alternatives if data are non-normal. 

 Click "Calculate Estimates" (figure 2 icon 8) to run the model. 

 

Step 4: Assess Model Fit  
AMOS provides multiple fit indices. The results of SEM path analysis are displayed in Table 2 (A-I) and figure 

4. Here we will assess the model fit which can be evaluated using multiple fit indices provided by AMOS. These 

included the chi-square statistic (CMIN), the comparative fit index (CFI), the Tucker–Lewis index (TLI), the 

incremental fit index (IFI), the root mean square error of approximation (RMSEA), and the chi-square to degrees 

of freedom ratio (CMIN/DF).  

 

As we discussed earlier, a non-significant chi-square value indicates acceptable model fit, although this test is 

known to be sensitive to sample size. Values greater than .95 for the CFI, TLI, and IFI are considered indicative 

of excellent fit (Hu & Bentler, 1999). An RMSEA value below .06 reflects good fit, and a CMIN/DF ratio less 

than 2 is typically viewed as desirable (Kline, 2016).  

 

 
Figure 4. Path Diagram with Estimated Parameters – Output  

Model NPAR CMIN DF P CMIN/DF 

Default model 22 22.173 13 .053 1.706 

Saturated model 35 .000 0   

Independence model 7 377.433 28 .000 13.480 

Table 2A. CMIN 

 

The model fit indices for the default, saturated, and independence models are presented in Table 2A. The default 

model (the hypothesized model) included 22 estimated parameters (NPAR) and produced a chi-square (CMIN) 

value of 22.173 with 13 degrees of freedom, yielding a p-value of .053. This non-significant p-value indicates 

that the model’s fit to the data is acceptable, as it suggests that the observed covariance matrix does not 

significantly differ from the model-implied matrix. The chi-square to degrees of freedom ratio (CMIN/DF) was 

1.706, which is below the commonly recommended threshold of 2.0, further supporting a good model fit (Kline, 

2016). 

 

The saturated model, which perfectly reproduces the observed data by estimating all variances and 

covariances, had a chi-square of 0 and 0 degrees of freedom, as expected. The independence model, which 

assumes that all variables are uncorrelated, showed a poor fit with a chi-square of 377.433 (df = 28, p < .001) 
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and a very high CMIN/DF of 13.480. This stark contrast in fit between the independence model and the default 

model underscores the plausibility and improvement of the hypothesized model. 

Overall, the fit indices suggest that the hypothesized (default) model provides an adequate to good fit to the 

data. 

 

Model 
NFI 

Delta1 

RFI 

rho1 

IFI 

Delta2 

TLI 

rho2 
CFI 

Default model .941 .873 .975 .943 .974 

Saturated model 1.000  1.000  1.000 

Independence model .000 .000 .000 .000 .000 

Table 2B. Baseline Comparisons 

  

Incremental fit indices for the default, saturated, and independence models are reported in Table 2B. The default 

model demonstrated strong fit based on several widely used indices. The Normed Fit Index (NFI) was .941, 

and the Relative Fit Index (RFI) was .873. While the NFI exceeds the commonly accepted threshold of .90, the 

RFI is slightly below the more conservative threshold of .90, indicating room for improvement in model 

parsimony (Bentler & Bonett, 1980). 

The Incremental Fit Index (IFI = .975), Tucker–Lewis Index (TLI = .943), and Comparative Fit Index (CFI = 

.974) all exceeded the .95 benchmark, indicating excellent model fit (Hu & Bentler, 1999). These results support 

the conclusion that the hypothesized model provides a substantially better fit to the data compared to the null 

(independence) model. 

 

As expected, the saturated model, which perfectly fits the data, yielded values of 1.000 across all indices. In 

contrast, the independence model produced values of 0.000 for all fit indices, reflecting its poor fit due to its 

assumption of no relationships among variables. Collectively, these results suggest that the default model 

demonstrates good to excellent fit according to conventional standards for incremental fit indices. 

 

Model PRATIO PNFI PCFI 

Default model .464 .437 .452 

Saturated model .000 .000 .000 

Independence model 1.000 .000 .000 

Table 2C. Parsimony-Adjusted Measures  

 

As shown in Table 2C, the default model yielded a Parsimony Ratio (PRATIO) of .464, indicating that 

approximately 46.4% of the possible degrees of freedom were used by the model. The Parsimony Normed Fit 

Index (PNFI) and Parsimony Comparative Fit Index (PCFI) were .437 and .452, respectively. These results 

suggest that the model demonstrates a reasonable level of parsimony while maintaining good fit. 

 

As expected, the saturated model, which has zero degrees of freedom and no model constraints, showed 

PRATIO, PNFI, and PCFI values of 0.000. In contrast, the independence model, which assumes no 

relationships among variables and uses all available degrees of freedom, yielded a PRATIO of 1.000, but its 

PNFI and PCFI remained at 0.000 due to poor model fit. 

Overall, the parsimony indices support the adequacy of the default model by indicating an acceptable trade-off 

between model complexity and goodness of fit. 
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Model NCP LO 90 HI 90 

Default model 9.173 .000 26.281 

Saturated model .000 .000 .000 

Independence model 349.433 290.394 415.915 

Table 2D. NCP  

 

The non-centrality parameter (NCP) offers an estimate of model misfit, where lower values suggest better model 

fit. Table 2D presents the NCP and its 90% confidence interval for the default, saturated, and independence 

models. The default model yielded an NCP of 9.173, with a 90% confidence interval ranging from 0.000 to 

26.281. The lower bound at zero and the relatively narrow upper bound indicate minimal model misfit, further 

supporting the adequacy of the hypothesized model. 

 

As expected, the saturated model, which perfectly fits the data, had an NCP of 0.000 with both lower and upper 

bounds at zero, reflecting exact fit. In contrast, the independence model showed a very high NCP of 349.433, 

with a 90% confidence interval ranging from 290.394 to 415.915, indicating substantial misfit. These findings 

reinforce the conclusion that the default model fits the data substantially better than the independence model 

and introduces minimal misfit. 

 

Model FMIN F0 LO 90 HI 90 

Default model .102 .042 .000 .121 

Saturated model .000 .000 .000 .000 

Independence model 1.739 1.610 1.338 1.917 

Table 2E. FMIN 

 

Table 2E presents the minimum value of the discrepancy function (FMIN) and the estimated population 

discrepancy function (F0), along with its 90% confidence interval. The default model yielded an FMIN of .102 

and an estimated F₀ of .042, with a 90% confidence interval ranging from 0.000 to .121. These values suggest 

that the model shows a low level of discrepancy between the observed and model-implied covariance matrices. 

The inclusion of zero in the lower bound of the confidence interval for F₀ indicates the possibility of a near-

perfect fit in the population. 

 

In contrast, the saturated model—which perfectly reproduces the sample data—had FMIN and F₀ values of 

0.000 with a confidence interval also fixed at zero, as expected for a model with no degrees of freedom. The 

independence model, which assumes all variables are uncorrelated, exhibited a much higher FMIN of 1.739 

and an F₀ of 1.610, with a 90% confidence interval from 1.338 to 1.917, indicating substantial misfit. Overall, 

the low F0 and narrow confidence interval for the default model support the conclusion that it adequately 

represents the underlying data structure with minimal discrepancy. 

 

Model RMSEA LO 90 HI 90 PCLOSE 

Default model .057 .000 .097 .348 

Independence model .240 .219 .262 .000 

Table 2F. RMSEA 

 

Table 2F displays the Root Mean Square Error of Approximation (RMSEA), its 90% confidence interval, and 

the p-value for close fit (PCLOSE) for the default and independence models. The default model produced an 

RMSEA value of .057, with a 90% confidence interval ranging from 0.000 to .097. This value falls just below 

the commonly accepted threshold of .06, indicating good approximate fit to the population data (Hu & Bentler, 

1999). The confidence interval includes zero, which suggests that close fit cannot be ruled out. Furthermore, the 
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PCLOSE value of .348 exceeds the .05 threshold, indicating that the hypothesis of close fit (i.e., RMSEA < .05) 

cannot be rejected. 

 

In contrast, the independence model yielded an RMSEA of .240, with a 90% confidence interval from .219 to 

.262 and a PCLOSE value of .000, clearly indicating poor fit. These values reflect the model’s severe misfit due 

to its assumption of uncorrelated variables. Overall, the RMSEA results support the conclusion that the default 

model provides an acceptable fit to the data, while the independence model performs poorly. 

 

Model AIC BCC BIC CAIC 

Default model 66.173 67.857   

Saturated model 70.000 72.679   

Independence model 391.433 391.968   

Table 2G. AIC  

 

Table 2G reports several information criteria used to assess model fit while accounting for model complexity: 

Akaike Information Criterion (AIC), Browne–Cudeck Criterion (BCC), Bayesian Information Criterion (BIC), 

and Consistent AIC (CAIC). Lower values on these indices indicate better relative fit and parsimony. 

 

The default model yielded an AIC of 66.173 and a BCC of 67.857, both of which are lower than those of the 

saturated model (AIC = 70.000; BCC = 72.679), suggesting that the default model achieves a better balance 

between model fit and complexity. The independence model showed much higher values (AIC = 391.433; 

BCC = 391.968), indicating poor fit. 

 

While BIC and CAIC values were not reported for the default and saturated models in this table, the substantially 

higher AIC and BCC values for the independence model clearly reflect its inferior fit. The available information 

supports the conclusion that the default model outperforms both the saturated and independence models in terms 

of parsimony-adjusted fit. 

 

Model ECVI LO 90 HI 90 MECVI 

Default model .305 .263 .384 .313 

Saturated model .323 .323 .323 .335 

Independence model 1.804 1.532 2.110 1.806 

Table 2H. ECVI 

 

Table 2H presents the Expected Cross-Validation Index (ECVI), its 90% confidence interval, and the Modified 

ECVI (MECVI) for the default, saturated, and independence models. The default model had an ECVI of .305, 

with a 90% confidence interval ranging from .263 to .384, and a MECVI of .313. These relatively low values 

suggest that the model is likely to perform well when applied to other samples from the same population, 

indicating good generalizability. 

 

The saturated model, which perfectly reproduces the sample data, showed a slightly higher ECVI of .323 and 

MECVI of .335. Although the saturated model achieves perfect fit, it may be overfitted and less parsimonious. 

Notably, the ECVI of the default model is slightly lower than that of the saturated model, which suggests that 

the default model achieves a better balance between fit and complexity. 

 

In contrast, the independence model yielded a substantially higher ECVI of 1.804 (90% CI: 1.532 to 2.110) 

and a MECVI of 1.806, indicating poor fit and weak generalizability. Overall, the ECVI and MECVI values 

further support the adequacy and relative parsimony of the default model compared to the saturated and 

independence models. 
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Model 
HOELTER 

.05 

HOELTER 

.01 

Default model 219 271 

Independence model 24 28 

Table 2I. HOELTER 

 

Table 2I presents Hoelter’s Critical N values at the .05 and .01 significance levels, which estimate the minimum 

sample size required for the model to be considered a good fit based on the chi-square test. For the default 

model, the CN was 219 at the .05 level and 271 at the .01 level. Both values exceed the commonly cited 

threshold of 200, suggesting that the model has an acceptable level of fit and that the current sample size is 

adequate for detecting meaningful model–data discrepancies (Hoelter, 1983). 

 

In contrast, the independence model yielded substantially lower CN values—24 at the .05 level and 28 at the 

.01 level—indicating extremely poor fit. These values reflect the model’s failure to adequately represent the 

observed data structure. Taken together, the Hoelter CN values support the conclusion that the default model 

fits the data well and is supported by a sufficient sample size, whereas the independence model is inadequate. 

 

Step 5: Interpret Parameters 

 Examine regression weights, standardized estimates, and R-squared values. 

 Significant paths validate hypothesized relationships. 

 

Tables 3 (A – B) display the results of the regression weights and squared multiple correlation coefficients. 

 

   Estimate S.E. C.R. P Label 

Job Behavior <--- Job Facets .596 .099 6.050 *** par_6 

Satisfaction <--- Job Behavior 1.000     

Turnover <--- Job Behavior -.723 .102 -7.072 *** par_1 

Colleague <--- Job Facets 1.000     

Supervision <--- Job Facets 1.251 .178 7.030 *** par_2 

Promotion <--- Job Facets .595 .089 6.658 *** par_3 

Burnout <--- Job Behavior -1.044 .145 -7.187 *** par_5 

Table 3A. Regression Weights: (Default model) 

 

Table 3A presents the unstandardized regression weights, standard errors (S.E.), critical ratios (C.R.), and p-

values for the hypothesized structural relationships in the model. All estimated paths were statistically 

significant at p < .001, as indicated by the "***" notation. 

 

The latent construct Job Behavior was significantly predicted by Job Facets (Estimate = 0.596, S.E. = 0.099, 

C.R. = 6.050, p < .001), supporting the hypothesized positive relationship. In turn, Job Behavior significantly 

predicted several outcomes. It had a strong negative effect on Turnover (Estimate = –0.723, S.E. = 0.102, C.R. 

= –7.072, p < .001) and on Burnout (Estimate = –1.044, S.E. = 0.145, C.R. = –7.187, p < .001), while positively 

predicting Satisfaction, which was fixed at 1.000 for model identification. 

Within the Job Facets construct, Colleague was used as a reference indicator (fixed at 1.000). Other indicators 

loaded significantly: Supervision (Estimate = 1.251, S.E. = 0.178, C.R. = 7.030, p < .001) and Promotion 

(Estimate = 0.595, S.E. = 0.089, C.R. = 6.658, p < .001), indicating they are valid and reliable indicators of the 

latent construct. Overall, the path estimates support the hypothesized relationships in the model, with all paths 

showing strong statistical significance and meaningful effect sizes. 
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   Estimate 

Job Behavior <--- Job Facets .831 

Satisfaction <--- Job Behavior .540 

Turnover <--- Job Behavior -.747 

Colleague <--- Job Facets .783 

Supervision <--- Job Facets .563 

Promotion <--- Job Facets .526 

Burnout <--- Job Behavior -.790 

Table 3B. Standardized Regression Weights: (Default model) 

 

Table 3B reports the standardized regression weights for the structural and measurement paths in the model. All 

reported paths indicate the strength and direction of the relationships between latent constructs and their 

observed indicators, as well as between latent variables. 

 

The latent variable Job Facets had a strong positive effect on Job Behavior (β = .831), indicating that higher 

levels of perceived job facets (e.g., colleague relations, supervision, and promotion opportunities) are strongly 

associated with more positive job behavior. Job Behavior, in turn, positively predicted Satisfaction (β = .540) 

and negatively predicted both Turnover (β = –.747) and Burnout (β = –.790). These findings suggest that 

greater engagement in positive job behaviors is associated with increased job satisfaction and reduced intentions 

to leave and emotional exhaustion. 

 

Regarding the measurement model, the standardized factor loadings of the indicators for Job Facets were all 

substantial: Colleague (β = .783), Supervision (β = .563), and Promotion (β = .526). These values indicate that 

all three observed variables are reliable indicators of the underlying construct, with Colleague being the most 

strongly associated. Overall, the standardized estimates provide strong empirical support for the proposed 

model, confirming both the strength and directionality of the hypothesized relationships. 

Example Case: Job Behavior Model A demonstration model tests the impact of Job Facets on Job Behavior 

and various outcomes. The model includes two latent variables (Job Facets and Job Behavior) and several 

observed outcomes (e.g., Satisfaction, Turnover). 

 

Key results: 

 Model Fit: χ2(13) = 22.173, p = .053; CFI = .974; RMSEA = .057 

 Path Coefficients: Job Behavior ← Job Facets: β = .831; Burnout ← Job Behavior: β = –.790. 

 

The hypothesized structural equation model demonstrated acceptable fit to the data, χ²(13) = 22.173, p = .053, 

CFI = .974, RMSEA = .057, indicating that the model adequately represents the observed relationships. The 

structural path from Job Facets to Job Behavior was strong and positive (β = .831), suggesting that favorable 

perceptions of job characteristics are associated with more constructive job-related behaviors. In turn, Job 

Behavior negatively predicted Burnout (β = –.790), indicating that higher levels of positive job behavior are 

associated with lower levels of employee burnout. 

 

DISCUSSION 

 

In assessing the model fit, the structural equation model (SEM) demonstrated acceptable to excellent fit across 

multiple indices. The chi-square test of model fit was non-significant, χ²(13) = 22.173, p = .053, indicating that 

the model's implied covariance structure did not significantly differ from the observed data. The chi-

square/degrees of freedom ratio (CMIN/DF = 1.71) also fell below the recommended threshold of 2.0, 

suggesting good model fit. Incremental fit indices further supported the adequacy of the model. The 
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Comparative Fit Index (CFI = .974), Incremental Fit Index (IFI = .975), and Tucker–Lewis Index (TLI = .943) 

all exceeded or approached the .95 benchmark for excellent fit (Hu & Bentler, 1999). The RMSEA value was 

.057 with a 90% confidence interval of [.000, .097], indicating good approximate fit, and the PCLOSE value 

(.348) suggested that the hypothesis of close fit (RMSEA < .05) could not be rejected. Parsimony-adjusted 

indices also supported model adequacy, with PNFI = .437 and PCFI = .452, reflecting a balance between model 

complexity and goodness of fit. The model demonstrated lower values on AIC (66.173) and BCC (67.857) 

compared to the saturated and independence models, indicating superior parsimony-adjusted fit. Additionally, 

the Expected Cross-Validation Index (ECVI = .305) and Modified ECVI (MECVI = .313) were lower than those 

of the saturated and independence models, suggesting better generalizability. Hoelter’s Critical N values (CN = 

219 at p = .05; CN = 271 at p = .01) exceeded the threshold of 200, indicating adequate sample size to support 

model stability. 

 

Regarding the path estimates, all hypothesized structural paths were statistically significant (all ps < .001). 

Standardized estimates revealed a strong positive relationship between Job Facets and Job Behavior (β = .831), 

suggesting that more favorable job characteristics (e.g., quality of supervision, promotion opportunities, and 

collegial support) are associated with increased constructive job behavior. 

In turn, Job Behavior positively predicted Satisfaction (β = .540) and negatively predicted both Turnover (β 

= –.747) and Burnout (β = –.790), indicating that employees who engage in more positive job behaviors are 

more satisfied and less likely to experience emotional exhaustion or consider leaving their jobs. The results of 

the SEM path analysis are displayed in tables 4 and 5. 

 

Predictor Outcome Estimate (β) SE CR p 

Job Facets Job Behavior .831 .099 6.050 < .001 

Job Behavior Satisfaction .540 — — — 

Job Behavior Turnover -.747 .102 -7.072 < .001 

Job Facets Colleague .783 — — — 

Job Facets Supervision .563 .178 7.030 < .001 

Job Facets Promotion .526 .089 6.658 < .001 

Job Behavior Burnout -.790 .145 -7.187 < .001 

Table 4. Standardized Regression Weights (N = 218) 

 

Fit Index Value Recommended Cutoff 

χ² (13) 22.173 p = .053 (ns) 

χ²/df 1.71 < 3.00 

CFI .974 > .95 

TLI .943 > .90 

RMSEA .057 < .06 

AIC 66.17 (for model comparison) 

Hoelter (0.05) 219 > 200 

Table 5. Model Fit Indices 

 

Implications to Research and Practice 

SEM offers numerous implications to research and practice.  Contrasting, traditional research methods, which 

focused on testing one bivariate or multivariate relationship using a single analysis, SEM integrates several 

disciplines into one model fitting framework. These include confirmatory factor analysis from education 

(Abrahim, et al., 2019; Ampofo & Aidoo, 2022); measurement error theory from psychology (DeShon, 1998); 

regression analysis from statistics (Musil, Jones, & Warner, 1998); path analysis from nutrition and 

epidemiology (Harris, et al., 2022; Christ, Lee, Lam, & Zheng, 2014); and simultaneous equations from 

econometrics (Bentler, 1983). Other special cases of SEM include multiple and multivariate regression; analysis 
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of variance and covariance (ANOVA / ANCOVA); recursive & nonrecursive models; and classical test theory. 

The example model tested in this paper, which represents research from the social science field, demonstrates 

SEM's ability to test complex relationships while controlling for measurement error.  

 

Research methodologies that are well-suited to investigate complex relationships are especially important to 

social science fields, where client groups often present with multi-layered complexities due to intersecting social 

dynamics that might compound problems. Such complexities inform theory development, helping to explain 

the multi-faceted nature of the relationship between observed constructs. Beyond that, SEM allows for the 

inclusion of unobservable constructs, without which, deeper explanations might be limited or omit critical 

contributions underlying complex problems. SEM’s integration of theory into statistical analysis addresses the 

limitations of traditional research methods – which were unable to build a theory – while simultaneously 

analyzing multiple causal relationships consisting of unobservable variables through longitudinal patterns (Cao, 

2023). Ultimately, theoretical models developed from advanced methodologies that account for measurement 

error, such as SEM, can underpin important interventions that improve clients’ well-being.  

 

CONCLUSION 

 

Many techniques have been used to analyze relationships, but few of them excel above SEM. An interdependent 

technique that evaluates multiple hypotheses simultaneously, SEM has evolved from a two-factor model 

(Spearman, 1904) to a multi-factor system, complete with both latent and observable variables that create a path 

diagram useful for explaining complex relationships. This technique is especially valuable for social science 

research, which notably investigates problems layered with multi-dimensional complexities. Good model fit 

and significant paths underscore the theoretical validity of the hypothesized relationships.  

 

Though the technique is lauded for its abilities to evaluate such complexities, one important limitation of SEM 

is the possibility of overfitting or erroneous conclusions if assumptions are not properly tested or theoretically 

grounded. Researchers must remain vigilant regarding these considerations. If misapplied, SEM's power can 

lead to overfitting or erroneous conclusions (MacCallum et al., 1992). Additionally, researchers must contend 

with issues pertaining to sample size requirements and causation when using SEM. 

 

In this paper, we developed a path analysis using SPSS AMOS, with results demonstrating acceptable to 

excellent fit across multiple indices. This paper sought to provide insight into the foundational principles and 

assumptions of SEM and its application using SPSS AMOS, while adding to the body of knowledge of advanced 

methodological techniques useful for social science research. 

 

Future Research 
Future research is ripe for use of SEM, especially in fields such as those in the social sciences. As previously 

mentioned, use of SEM within the context of multi-layered complexities seen in such fields allow for the 

examination of endless latent constructs, furthering the development of tailored theoretical models and 

interventions for a larger variety of intersecting group dynamics. This feature of SEM is one of the many benefits 

of the technique, and there are others presented throughout the literature – its correction for unreliability of 

measurement error; its ability to test and compare model fitness; and its ability to specify causal chains for 

complex sets of relationships. However, the disadvantages of SEM have also been noted. First, the technique is 

not well-suited for small samples (Ramlall, 2016). Large sample size is a requirement for SEM, as the accuracy 

of SEM decreases with smaller sample sizes. To this, Wolf et al. (2013) suggests that statistical power analysis 

is not the sole requirement for achieving an adequate sample size; they also recommend addressing 

considerations pertaining to bias and missing data (Tomarken & Waller, 2005) when achieving adequate sample 

size. Future research can target methods that allow for utilizing SEM with smaller sample sizes without 

compromising statistical power or model fit. 
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Additionally, despite SEM’s ability to merge several analytical methods together, the method does not inherently 

allow for causal conclusions to be drawn, although, under specific assumptions, the technique can be conducted 

to assume causality (Nachtigall et al., 2003). When causation is sought, SEM achieves this goal, moving beyond 

mere correlation – a term often incorrectly used interchangeably with causation – to allow for the creation of 

accurate theoretical models that offer a deeper and more nuanced explanation of the connection between 

variables through path analyses or longitudinal structural causal models (Cao, 2023; Madhanagopal & Amrhein, 

2019). Given the importance of the development of complex theoretical models for social science research, an 

area of future research for this consideration can focus on methods that allow SEM to draw causal conclusions 

without current assumption restraints. Lastly, SEM does not currently allow for the conclusive determination of 

model validity. In a general sense, validity ensures accuracy. While theoretical models often undergo rigorous 

testing that account for errors, the inability for SEM to ensure model validity presents an area for future research, 

in which SEMs would produce theoretical models that are accurate, better improving the underpinning of 

theoretically-based interventions. 
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