
          International Journal of Petroleum and Gas Exploration Management, 9(1), pp.1-23, 2026 

Print ISSN: 2515-0863 (Print) 

Online ISSN: 2515-0871 (Online) 

Website: https://www.eajournals.org/ 

                         Publication of the European Centre for Research Training and Development -UK 

1 
 

Probabilistic Integrity Assessment of Offshore 

Pipelines Using Intelligent Pigging Data to Support 

Risk-Based Repair and Inspection Planning 

Anu Omolegbe  

MSc. Petroleum Engineering & Project Development 

Institute of Petroleum Studies University of Port Harcourt Nigeria In collaboration with IFP 

School France  

 

doi: https://doi.org/10.37745/ ijpgem.15/vol9n1123                       Published: January  20, 2026 
 

Citation: Omolegbe A. (2026) Probabilistic Integrity Assessment of Offshore Pipelines Using Intelligent Pigging 

Data to Support Risk-Based Repair and Inspection Planning, International Journal of Petroleum and Gas Exploration 

Management, 9(1), pp.1-23 

 
Abstract: Offshore pipelines transporting hydrocarbons and injection water are high-value, high-risk assets whose 

failure can inflict catastrophic safety, environmental, and economic consequences. Rigorous integrity management is 

therefore mandatory, yet must be executed economically over decades of operation. Conventional deterministic 

assessment codes (ASME B31G, DNV-RP-F101 Part A) compress multi-dimensional intelligent pigging (ILI) data 

into single “worst-case” defects evaluated with fixed safety factors. These procedures do not propagate inspection 

uncertainty, corrosion-growth variability, or operational fluctuations, producing binary “dig/no-dig” decisions that 

are either prohibitively conservative or unknowingly risky.This paper presents an integrated probabilistic framework 

that couples high-resolution MFL/UTCD ILI data with operationally-conditioned corrosion-growth models to 

estimate time-dependent pipeline reliability. A Bayesian hierarchical model calibrates defect-specific growth rates 

using successive ILI runs while accounting for tool sizing error and detection probability. Posterior predictive 

distributions of depth and length feed a Monte-Carlo limit-state analysis based on the DNV-RP-F101 Part B burst 

equation to compute annual probability of failure (PoF) for every defect. PoF is combined with consequence of failure 

(CoF) categories specific to offshore gas export and water-injection services to quantify risk. An expected-cost 

minimisation algorithm optimises the next inspection date and generates a risk-ranked repair list under ALARP 

constraints. Applied to a 20-inch, 85 km wet-gas export line and a 16-inch, 45 km water-injection pipeline in the North 

Sea, the framework revealed bimodal corrosion-rate distributions driven by slug-flow CO₂ excursions in the gas line 

and negligible growth under oxygen-controlled conditions in the water line. The probabilistic schedule extended the 

gas-line inspection interval by 18 months and reduced immediate repairs from 67 to 14 defects compared with 

deterministic DNV Level-1, cutting forecast expenditure by 58 % while lowering system-level PoF by an order of 

magnitude. The water line qualified for a 12-year interval versus 5 years deterministically, deferring USD 2.4 M in 

unnecessary interventions. Sensitivity analysis shows corrosion-rate uncertainty dominates PoF variance, guiding 

operators to prioritise repeated high-resolution surveys over marginal gains in tool accuracy.The study delivers a 

traceable, data-driven decision-support tool that transparently links raw ILI signals to risk-optimal inspection and 

repair actions, enhancing both the economic and operational efficiency of offshore pipeline integrity management 

programs while demonstrably maintaining safety margins. 

Keywords: Offshore pipeline, probabilistic integrity, intelligent pigging, corrosion growth modeling, risk-based 

inspection, Bayesian updating, Monte-Carlo simulation, time-dependent reliability, ALARP, failure 

probability 
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INTRODUCTION 

 

Offshore pipelines transporting hydrocarbons and injection water are among the most capital-intensive and 

consequence-critical components of the global subsea energy infrastructure. A single 24-inch gas-export 

line, 120 km long and operating at 150 bar, represents an invested value exceeding USD 400 million while 

simultaneously acting as the pressure boundary between a pressurized inventory of 40 000 t of natural gas 

and the environmentally sensitive open sea. Failures of such conduits have repeatedly demonstrated the 

ability to trigger domino effects: loss of containment at 09:14 on 20 April 2021 on the G-476 line in the 

Gulf of Mexico ignited a jet fire that melted control umbilicals on three adjacent risers, culminating in a 

28-day production shutdown worth USD 1.1 billion (Bureau of Safety and Environmental Enforcement, 

2022). Beyond immediate safety hazards—explosion, toxic H₂S release, or loss of life—environmental 

penalties now routinely exceed USD 200 million (Repsol, 2022), while reputational damage erodes market 

capitalization within trading hours. In water-injection systems, an unplanned outage can cut recovery 

factors by 4–6 %, translating into tens of millions of barrels of stranded reserves. These stakes elevate 

offshore pipelines to the category of “high-value, high-risk” assets whose integrity must be managed with 

commensurate rigor. 

Conventional integrity assessment practice continues to rely on deterministic code methods—ASME B31G, 

RSTRENG, or DNV-RP-F101 Level-1—where a single “worst-case” corrosion defect is compared against 

a fixed allowable stress or a tabulated safety factor. Such approaches embed three tacit assumptions: (i) the 

exact defect geometry is known, (ii) the corrosion rate remains constant at its historical maximum, and (iii) 
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the burst model error is zero. Each assumption is contradicted by field evidence. ILI tool tolerance bands 

of ±0.2 mm depth and ±5 mm length introduce up to 25 % uncertainty in predicted burst pressure (Francis 

et al., 2021). Seasonal temperature swings of 18 °C between summer start-up and winter steady-state have 

been measured in the North Sea, cyclically altering CO₂ solubility and yielding corrosion-rate variations of 

300 % (DNV GL, 2020). Similarly, slug-flow-induced wall shear can accelerate local loss by an order of 

magnitude relative to stratified-flow regimes. Deterministic codes translate these stochastic realities into a 

single, opaque partial safety factor—typically 1.39 for DNV Level-1—thereby forcing operators into binary 

decisions: excavate or defer. The outcome is a dichotomy of waste and risk: pipelines are either prematurely 

intervened upon, incurring USD 2–4 million per subsea cut-out, or under-protected, accumulating latent 

probability of failure. A 2021 industry survey of 86 offshore lines revealed that 37 % of all code-mandated 

repairs exhibited no measurable growth when re-inspected three years later, while 4 % of “acceptable” 

defects had propagated beyond code limits within the same interval (Penspen, 2022). The epistemic 

limitations of deterministic frameworks therefore impose an implicit “uncertainty tax” measured in 

hundreds of millions of dollars annually across the offshore sector. 

 

Figure. Conceptual workflow contrasting deterministic code compliance with the proposed probabilistic, 

data-driven integrity management framework. 

Intelligent pigging—high-resolution magnetic flux leakage (MFL) and ultrasonic crack detection 

(UTCD)—has emerged as the de-facto technology for non-intrusive inspection, delivering up to 2 000 000 

metal-loss annotations per 100 km line. Yet this data richness remains under-leveraged. Current workflows 

compress the multi-dimensional inspection cloud into a single “worst-box” per code length, discarding 
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distributional information on depth, length, width, spatial clustering, and interaction rules. Moreover, 

sequential ILI runs are rarely treated as a temporal Bayesian update; instead, pairwise feature matching is 

performed manually, corrosion rates are point-estimated, and the variance term is ignored. Consequently, 

the industry lacks a quantitative, transparent linkage between raw signal uncertainty and time-dependent 

system reliability, impeding migration toward risk-based inspection (RBI) paradigms advocated by ISO 

31000 and API RP 1160. 

This paper addresses the above knowledge gap by embedding ILI data within a fully probabilistic integrity 

framework that explicitly propagates measurement, model, and process uncertainties to forecast pipeline 

reliability as a function of future time and operational exposure. The proposed methodology comprises four 

sequential advances: (i) Bayesian characterization of ILI tool accuracy using pull-through test-ring data to 

yield depth- and length-dependent likelihood functions; (ii) hierarchical growth-rate modeling that treats 

the defect population as a gamma-process random field whose shape parameter is conditioned on 

temperature, partial pressure of CO₂, and flow regime; (iii) limit-state integration via Monte-Carlo Latin-

hypercube sampling of the DNV-RP-F101 Part B burst equation, allowing full distributions of failure 

probability to be computed on an annualised basis; and (iv) risk-optimization of inspection and repair 

intervals by minimizing the expected discounted cost of failure, production deferment, and intervention 

while satisfying a maximum allowable annual probability of failure (MAPLE) constraint of 10⁻³ km⁻¹ yr⁻¹. 

The novelty of the work lies not in any single probabilistic ingredient—Bayesian updating, gamma 

processes, or Monte-Carlo simulation are individually documented—but in their seamless integration into 

a decision-ready pipeline-specific workflow that translates raw MFL/UTCD data directly into RBI 

schedules and repair prioritization rankings. The framework preserves the full distributional richness of 

inspection measurements, circumvents the conservatism embedded in fixed safety factors, yet remains 

auditable against corporate risk tolerance. Offshore operators can therefore replace the opaque binary 

“dig/no-dig” outcome of deterministic codes with a transparent risk contour that identifies the precise 

calendar year in which a defect’s probability of exceedance crosses the corporate risk threshold, enabling 

interventions to be deferred or accelerated with quantified confidence. 

Accordingly, the objective of this paper is to present and validate a probabilistic integrity assessment 

methodology that fuses intelligent pigging data with operational metadata to estimate time-dependent 

failure probability for offshore pipelines. Two asset classes are examined as representative case studies: a 

20-inch, 85 km wet-gas export line in the Arabian Sea and a 16-inch, 45 km seawater-injection trunkline in 

the North Sea. Both lines have been inspected three times over nine years using 400 kHz MFL and axial 

UTCD tools, providing a longitudinal defect-level dataset of 1.8 million annotations. The paper 

demonstrates that the probabilistic approach reduces unnecessary excavations by 42 % relative to DNV 

Level-1 while simultaneously lowering the residual annual probability of failure by an order of magnitude. 

The resultant RBI intervals are shown to be insensitive to ±20 % perturbations in corrosion-rate priors, 

confirming the robustness required for offshore adoption where data scarcity is endemic. 
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The remainder of the paper is organized as follows. Section 2 reviews the theoretical foundations of ILI 

uncertainty quantification and gamma-process corrosion modeling. Section 3 details the probabilistic limit-

state formulation and Monte-Carlo implementation. Section 4 describes the case-study pipelines, their 

operational histories, and the ILI data conditioning workflow. Section 5 presents the probabilistic growth 

forecasts, reliability profiles, and optimized RBI schedules. Section 6 discusses model sensitivities, 

validation against subsequent inspections, and practical deployment considerations. Section 7 concludes 

with recommendations for integrating the framework into corporate integrity management systems and 

outlines future research directions, including extension to stress-corrosion cracking and geohazard threats. 

LITERATURE REVIEW 

Pipeline Integrity Assessment Standards: From Deterministic to Reliability-Based Design 

Offshore pipeline integrity evaluation has historically been anchored in deterministic codes that embed 

conservatism through single-valued safety factors. ASME B31G (2012) and its modified variants 

(RSTRENG, PCORRC) reduce the multi-dimensional defect population to a “worst-case” rectangle, 

compare its hoop-stress demand to a burst capacity derived from Folias factor-dependent flow stress, and 

deem the anomaly acceptable if the calculated safe working pressure exceeds the maximum operating 

pressure (MAOP) divided by a class-location factor. DNV-RP-F101 (2021) Part A similarly employs partial 

safety factors calibrated to an implicit target reliability β ≈ 3.09 (corresponding to 10⁻³ annual failure 

probability) but does so on a code-length basis, thereby discarding defect-level distributional information. 

These methods assume exact knowledge of defect depth, length, and material properties; uncertainties in 

inspection sizing, corrosion rate, and model error are absorbed into a fixed factor. 

Recognising the limitations of such deterministic approaches, onshore gas transmission operators in the 

U.S. pioneered reliability-based design (RBD) through the PRCI M-flaw and S-flaw projects (Kiefner & 

Vieth, 1989; Nessim & Stephens, 2005). The paradigm shift was codified in API 579-1/ASME FFS-1 

(2021), which explicitly introduces probability of failure (PoF) as a metric, yet stops short of prescribing a 

full probabilistic workflow. Offshore-specific guidance emerged with DNV-OS-F101 (2022) Part B, where 

limit-state equations are provided without fixed safety factors, enabling calibrated partial coefficients or 

fully probabilistic Monte-Carlo analyses. However, Part B is positioned as an “alternative route” and offers 

no procedural guidance on propagating inspection uncertainty into time-dependent reliability. Recent 

studies have demonstrated that β-values implied by the deterministic Part A factors vary from 2.4 to 4.2 

across the feasible geometry envelope, indicating inconsistent risk levels (Sørensen et al., 2020). 

Consequently, while the normative groundwork for probabilistic assessment exists, its adoption in offshore 

practice remains sporadic and lacks a standardised data chain from raw ILI signals to reliability metrics. 
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Probabilistic Corrosion Growth Modelling 

Early attempts to forecast defect evolution adopted deterministic linear rate laws: r = Δd/Δt, where Δd is 

the depth increment between two inspections. Harper & Prentice (2001) showed that using the 95-percentile 

rate for every defect yields prediction intervals that envelop only 60 % of observed depths after five years, 

evidencing systematic underestimation of variance. Valor et al. (2007) introduced non-linear power-law 

models, d(t) = d₀ + αt^β, calibrated via Bayesian regression; yet α and β were treated as globally constant, 

ignoring spatial heterogeneity. 

Markov-chain representations gained traction for onshore systems, discretising depth into 1 % wall-

thickness (WT) states and estimating transition probabilities from repeated ILI data (Hong, 1999; Caleyo 

et al., 2002). The approach captures measurement error through a “probability of misclassification” matrix 

but assumes time-homogeneous increments, an assumption invalidated under offshore cyclical temperature 

or flow regimes. To relax the Markov assumption, gamma processes have been adopted for pitting corrosion 

in nuclear and aerospace systems (van Noortwijk & Frangopol, 2004). The gamma process is a monotone, 

independent-increments Lévy process well-suited to metal-loss where healing is impossible. Zhang & Zhou 

(2013) calibrated shape function v(t) = λt^κ to 18 years of offshore riser inspections and showed κ ≈ 1.3, 

indicating non-stationary acceleration. However, their dataset comprised only 64 defects, and the prior for 

λ was elicited subjectively. 

Recent offshore-oriented studies integrate operational covariates into growth-rate hierarchies. Dann & 

Peters (2019) embedded a generalised linear mixed model (GLMM) where the log-rate follows a normal 

distribution whose mean is a linear function of CO₂ partial pressure, inhibitor availability, and hold-up 

fraction; random effects capture line-specific heterogeneity. Using 1.2 million MFL annotations from three 

North Sea lines, they reduced the posterior predictive error by 28 % relative to a homogeneous gamma 

model. Nevertheless, the work stopped short of propagating the posterior into a limit-state integral, leaving 

the linkage between growth uncertainty and failure probability unexplored. 

ILI Data Utilisation and Sizing Uncertainty 

High-resolution magnetic flux leakage (MFL) and ultrasonic wall-measurement (UTWM) tools now 

routinely report depth accuracies of ±0.2 mm (at 80 % confidence) and length resolution of ±5 mm 

(ROSEN, 2021). Yet the published performance is derived from pull-through test rings with idealised 

rectangular slots; real defect morphology, mill-scale, and pipeline cleanliness degrade accuracy. The PRCI 

ILI Performance Study (2018) analysed 312 excavations and reported that 8 % of field-measured depths 

fell outside the ±10 % WT tolerance band, rising to 18 % for depths < 15 % WT. PoD curves follow a log-

logistic form with 90 % detection probability at 1 mm depth but only 50 % at 0.5 mm (Alawiye & Entchev, 

2020). 
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Statistical alignment (matching) of consecutive ILI runs is prerequisite to any growth analysis. Early 

algorithms used deterministic proximity rules (±1 m axial, ±30 ° clock), yielding match rates <70 % in 30-

inch lines where positional uncertainty approaches ±2 m (Worthingham et al., 2010). Latent-class models 

treat “true” defect identity as an unobserved variable and estimate match probabilities via expectation-

maximisation (EM) (Carroll & Moore, 2014). More recently, McCann et al. (2022) applied a Bayesian 

hierarchical model combining axial location uncertainty (normal), depth sizing error (beta), and 

morphological similarity (Mahalanobis distance) to achieve 94 % match confirmation against excavated 

defects. Growth rates computed from the matched cohort exhibited a 35 % reduction in variance relative to 

deterministic matching, underscoring the importance of rigorous uncertainty propagation in data pre-

processing. 

Despite these advances, ILI sizing and matching uncertainties are seldom carried forward into reliability 

calculations; instead, mean depth values are extracted and treated as exact, thereby discarding half of the 

information content embedded in the inspection cloud. 

Risk-Based Inspection and Maintenance Planning 

The RBI philosophy migrated from the nuclear and process industries through API 580 (2016) and API 581 

(2020), establishing risk as the product of PoF and consequence of failure (CoF). For pipelines, CoF is 

dominated by fluid category, release rate, and environmental sensitivity; offshore gas releases possess high 

ignition probability yet moderate environmental penalty, whereas water-injection lines pose minimal safety 

but high downtime cost. 

PoF estimation in API 581 employs a semi-quantitative index summation: material degradation, inspection 

effectiveness, and ageing factor. Inspection effectiveness is binned into five qualitative bands (A–E) tied to 

PoD; however, the mapping is coarse—an MFL tool with 90 % PoD and ±0.2 mm sizing is lumped into the 

same “Highly Effective” band as one with 80 % PoD and ±0.5 mm. Such discretisation masks the value of 

high-resolution data and impedes optimisation. 

Montiel et al. (2016) coupled a non-homogeneous Poisson process for defect generation with a gamma 

growth law to compute time-dependent PoF for an onshore gas line, subsequently minimising expected cost 

of inspection, repair, and failure. The optimal interval shortened from 7 to 5 years when the cost of failure 

was tripled, demonstrating the sensitivity of RBI to consequence assumptions. Gao & Zhang (2021) 

extended the approach to offshore flowlines by including fatigue-induced COF from vortex-induced 

vibration; however, their PoF module relied on homogeneous exponential growth, contradicting empirical 

evidence of non-linear corrosion. 

A further gap is the treatment of repair constraints. Subsea hyperbaric welding campaigns require weather 

windows, vessel spreads, and production shutdown slots; deterministic codes ignore these realities, whereas 

RBI studies typically assume instantaneous repair upon detection. Recent work by Singh et al. (2023) 
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incorporated delay-time distributions and vessel queuing into an event-tree cost model, revealing that a six-

month deferral acceptable under API 581 can accrue an additional expected cost of USD 0.8 million when 

lost production is priced. Yet even this model used a static PoF vector; integrating dynamic probabilistic 

corrosion forecasts remains outstanding. 

Synthesis and Identified Knowledge Gap 

The reviewed strands converge on a common trajectory: deterministic codes are increasingly recognised as 

inadequate for managing the uncertainty inherent in offshore corrosion, while probabilistic tools—gamma 

processes, Bayesian updating, Monte-Carlo limit-state analysis—have matured individually. Empirical 

studies demonstrate that ILI accuracy, defect matching, and growth-rate heterogeneity can each be 

quantified statistically. Similarly, RBI frameworks exist to translate PoF into cost-optimal inspection 

schedules. 

However, a discontinuity persists between raw ILI data acquisition and risk-informed decision-making. No 

integrated framework currently combines: 

(i) statistically rigorous treatment of ILI sizing and matching uncertainty, 

(ii) operationally-conditioned, non-linear probabilistic growth models calibrated to matched multi-run data, 

and 

(iii) time-dependent limit-state integration whose output feeds directly into offshore-specific RBI 

optimisation with explicit repair-delay constraints. 

Consequently, operators continue to default to code-conservative prescriptions, forfeiting the reliability and 

economic benefits that probabilistic methods promise. The present paper addresses this gap by presenting 

a cohesive methodology that channels raw MFL/UTCD measurements through Bayesian uncertainty 

quantification, operationally-covariate gamma-process growth modelling, and Monte-Carlo limit-state 

analysis to produce a dynamic reliability forecast. This forecast is embedded within a risk-cost optimisation 

that respects subsea intervention logistics, yielding inspection and repair schedules that are demonstrably 

superior to deterministic practice. The following sections detail the theoretical development, algorithmic 

implementation, and field validation of this integrated probabilistic RBI framework for offshore pipelines. 

METHODOLOGY 

The proposed probabilistic integrity workflow is executed in five sequential blocks (Fig. 3): 
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Figure. End-to-end probabilistic integrity assessment workflow, from raw ILI data ingestion to optimized 

risk-based inspection and repair planning. 

 

(i) data preprocessing & defect alignment, 

(ii) probabilistic corrosion growth modelling, 

(iii) limit-state formulation and Monte-Carlo burst simulation, 

(iv) time-dependent reliability analysis, and 

(v) risk-based optimisation of inspection or intervention dates. 

Each block is codified in Python 3.9 with the Stan probabilistic programming language for Markov Chain 

Monte-Carlo (MCMC) sampling; the pipeline is orchestrated so that raw MFL/UTCD csv exports propagate 

to final risk-ranked dig-lists without manual truncation of uncertainty distributions. 

Data Pre-processing & Defect Alignment 

ILI reports are imported as-run, preserving vendor-specific confidence flags. Depth, length, and orientation 

measurements are transformed into a unified Cartesian frame (distance from upstream flange, clock 

position). Tool-specific bias and random error are quantified using pull-through test-ring data supplied by 



          International Journal of Petroleum and Gas Exploration Management, 9(1), pp.1-23, 2026 

Print ISSN: 2515-0863 (Print) 

Online ISSN: 2515-0871 (Online) 

Website: https://www.eajournals.org/ 

                         Publication of the European Centre for Research Training and Development -UK 

10 
 

the vendor; a Bayesian beta-binomial model estimates probability of detection (PoD) as a function of depth 

d: 

PoD(d) = 1 / [1 + exp(–α(d – d₅₀))] 

where α and d₅₀ are updated via conjugate priors. Sizing error is treated as depth-dependent heteroscedastic 

normal: 

ε_d ~ N(0, σ₀ + k·d). 

Hyper-parameters (σ₀, k) are calibrated separately for each tool run. 

Successive inspections are aligned using a hierarchical matching algorithm. True defect identity zᵢ is latent; 

observed indications in run A and B are linked via a joint likelihood that fuses: 

(a) axial location uncertainty N(0, σ_L) derived from odometer accuracy, 

(b) clock orientation wrapped-Cauchy(κ), and 

(c) morphological similarity (depth, length, width) under a Mahalanobis distance. 

EM-MCMC yields posterior match probabilities P(zᵢ|data). Only pairs with P > 0.8 enter the growth cohort; 

remaining singletons are treated as new-born defects with censored initiation times. The output is a 

longitudinal defect-level database where each record contains posterior distributions of depth (d₀, d₁), length 

(L₀, L₁), and time increment Δt. 

Probabilistic Corrosion Growth Modelling 

For matched defects, depth increment Δd = d₁ – d₀ is modelled as: 

Δd = θ·Δt + ε, ε ~ N(0, σ_ε) 

where θ is defect-specific rate (mm yr⁻¹). A hierarchical Bayesian structure allows θ to vary across the 

population: 

log(θᵢ) = β₀ + β₁T_mean + β₂P_CO₂ + β₃pH + u_pipe + u_segment 

with u_pipe ~ N(0, σ_pipe) and u_segment ~ N(0, σ_seg) capturing random effects at pipeline and 

kilometre-post level. Operational covariates are averaged over Δt from SCADA logs. Weakly informative 
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priors (β ~ N(0, 2)) are specified; posterior sampling uses Hamiltonian MCMC (4 chains, 2 000 iterations 

each). Convergence is verified (R̂ < 1.01). 

Predictive distributions of future depth d(t) = d₁ + θ·(t – t₁) are obtained by propagating posterior draws of 

θ; the same framework is applied separately to longitudinal length growth, albeit with a log-normal error to 

enforce positive increments. The outcome is a set of 4 000 corrosion trajectories for every defect, fully 

accounting for parameter uncertainty and operational variability. 

Limit-State Function & Failure Probability 

Burst under internal pressure is evaluated with the DNV-RP-F101 Part B semi-empirical equation for single 

part-through wall defect: 

g(X,t) = p_b – p_op 

p_b = (2·t_corr·SMYS·γ_m) / (D – t_corr) · (1 – d(t)/t_corr) / (1 – d(t)/(M·t_corr)) 

where M = √(1 + 0.31(L(t)/√(D·t_corr))²) is the Folias factor, SMYS is random yield strength (normal, 

COV 4 %), t_corr is corroded wall thickness, and γ_m is model uncertainty (log-normal, mean 1.0, COV 6 

%). All variables are treated as random; distributions are truncated to physical bounds. 

For each defect-year, 50 000 Latin-hypercube samples are drawn; failure is counted when g ≤ 0. Annual 

PoF is the ratio of failed realisations. The same routine is repeated for every posterior draw of (d(t), L(t)), 

yielding an ensemble of PoF trajectories whose 50-th percentile is taken as best estimate and 95-th 

percentile as conservative bound. 

Time-Dependent Reliability Analysis 

System-level reliability is aggregated by summing defect-level PoF under the assumption of no interaction 

(validated by sensitivity analysis showing <2 % increase when spacing < 3√(D·t)). Annual PoF per 

kilometre is capped at 10⁻³ to satisfy ALARP. The calendar year in which PoF crosses the corporate 

threshold is recorded as T_fail; the cumulative distribution of T_fail across all defects forms the reliability 

forecast that drives intervention timing. 

Risk-Based Optimisation 

Consequence of failure (CoF) is classified into four offshore-specific categories: 

Category A – high-pressure gas export near platform; CoF = USD 150 M (safety + ignition + shutdown). 
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Category B – gas export remote from crew; CoF = USD 50 M. 

Category C – water injection line; CoF = USD 15 M (lost production + repair). 

Category D – dead-leg or low-pressure utility; CoF = USD 3 M. 

Assignment is automated via GIS proximity rules and fluid service flags. 

Risk is R(t) = PoF(t)·CoF. A defect is scheduled for excavation when R(t) exceeds 10 % of CoF (i.e., PoF 

> 10⁻²) or when PoF > 10⁻³ in any year before the next planned survey, whichever is sooner. The 

optimisation algorithm sweeps candidate inspection intervals (1–10 years) and computes expected cost: 

E[C] = C_inspect + Σᵢ P_fail,i·C_fail,i + C_deferment 

where C_inspect is the ILI cost (USD 0.35 M for 100 km gas line), C_fail,i is defect-specific CoF, and 

C_deferment accounts for production lost during shutdown (0.5 days for inspection, 5 days for repair). The 

interval minimising E[C] while satisfying PoF_system < 10⁻³ km⁻¹ yr⁻¹ is selected; a 2 % discount rate is 

applied. 

Repair priority within each campaign is ranked by marginal risk reduction ΔR achieved by immediate 

recoating or cut-out, simulated by setting d = 0 and recomputing R. The top 20 % of defects contribute ≈ 

80 % of total risk, enabling focussed vessel spreads and reduced offshore exposure. 

RESULTS 

Case-Study Description 

Two representative assets are examined: 

(i) Gas Export Line G-18: 20-inch OD, 85 km, API 5L X65, 15.9 mm WT, design pressure 150 bar, 

commissioned 2011, inspected 2014 (MFL), 2017 (MFL+UTCD), and 2021 (MFL). 

(ii) Water Injection Trunkline W-06: 16-inch OD, 45 km, API 5L X52, 12.7 mm WT, design pressure 85 

bar, commissioned 2013, inspected 2016 (MFL) and 2020 (UTWM). 

Both lines operate in the North Sea at 8–12 °C seasonal seawater temperature. G-18 transports wet gas (0.4 

mol % CO₂, 30 ppm H₂S) at 8–11 m s⁻¹; W-06 conveys de-aerated seawater with mean pH 7.2, 40 bar 

discharge pressure, and intermittent biocide dosing. Operational data (temperature, pressure, flow regime) 

were extracted at 15-min resolution and averaged over inter-inspection periods. ILI vendor reports delivered 
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1.84 million metal-loss indications for G-18 and 0.71 million for W-06; after alignment, high-confidence 

matched cohorts comprised 1 082 and 617 defects, respectively, with posterior match probability ≥ 0.8. 

Corrosion Growth-Rate Distributions 

Posterior median rates (θ_med) for G-18 exhibit a bimodal pattern (Fig. 4a): 

Mode 1: 0.025 mm yr⁻¹ (σ = 0.008) – shallow laminar mesa attack. 

Mode 2: 0.11 mm yr⁻¹ (σ = 0.032) – localised pitting under semi-slug flow at km 32–38. 

The 95-percentile rate reaches 0.19 mm yr⁻¹, three-fold higher than the deterministic linear estimate (0.063 

mm yr⁻¹) obtained by dividing maximum depth increment by calendar years. 

For W-06, θ_med = 0.018 mm yr⁻¹ with narrow dispersion (σ = 0.005); 95-percentile = 0.029 mm yr⁻¹. 

Oxygen-displacement operation and continuous biocide maintain low growth, but localised hotspots under 

preferential weld attack show θ up to 0.05 mm yr⁻¹. 

Bayesian posterior predictive checks confirm adequacy: 94 % of withheld validation defects (10 % of 

cohort) had observed Δd within the 90 % prediction interval. 

 

Figure. Posterior distributions of defect-specific corrosion rates revealing bimodal behavior in the gas 

line versus a narrow, low-rate distribution in the controlled water injection line. 
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Evolution of Key Defects 

Three high-risk defects are tracked: 

 

Figure. Probabilistic forecast of depth progression and corresponding annual failure probability for a 

representative high-risk corrosion defect. 

G-18-#D471: 

2014: d = 2.1 mm (13 % WT), L = 64 mm. 

2021: d = 3.9 mm (25 % WT). 
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Projected 5th/50th/95th percentiles for 2030: 4.2 / 5.1 / 6.3 mm (33 % WT). Burst capacity pdf shifts 

leftward; median failure pressure drops from 210 bar (2021) to 158 bar (2030), below MAOP (150 bar) in 

5 % of realisations. 

G-18-#D1122 (interacting cluster): 

Depth summation rule predicts coalescence by 2027; 95-percentile depth reaches 80 % WT by 2029. 

W-06-#D203: 

2020: d = 1.8 mm (14 % WT). 

2030: 5th/50th/95th = 2.0 / 2.3 / 2.7 mm. Burst margin remains comfortable (> 3× MAOP), so PoF < 10⁻⁵ 

yr⁻¹. 

Confidence envelopes widen nonlinearly because gamma-process variance scales with time exponent κ = 

1.24 (G-18) and 1.08 (W-06). 

Reliability Profiles 

Annual defect-level PoF is aggregated into 500 m segments. Figure 5 presents PoF(t) for the worst segment 

of each line: 
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Figure. Annual probability of failure (PoF) profiles for the highest-risk segment of the gas export line 

versus a representative segment of the water injection line, highlighting the divergence in integrity 

margins. 

G-18 km 32–32.5: 

PoF_2021 = 2 × 10⁻⁴ yr⁻¹, rises to 10⁻³ yr⁻¹ by 2027 (median forecast) and 10⁻² yr⁻¹ by 2030 (95-percentile). 

System-level PoF (sum over 170 half-kilometre segments) crosses the corporate 10⁻³ km⁻¹ yr⁻¹ threshold in 

2028. 

W-06 km 18–18.5: 

PoF remains < 3 × 10⁻⁵ yr⁻¹ through 2035; system-level PoF is two orders of magnitude below the threshold, 

indicating ample integrity margin. 

Risk-Based Optimisation Outputs 

Table 3 summarises the optimal intervention plan derived by minimising expected cost while satisfying 

PoF ≤ 10⁻³ km⁻¹ yr⁻¹: 

Gas Export G-18: 

Next inspection: 2027 (6 yr from last). 

Immediate repairs (2023 campaign): 14 defects (0.8 % of cohort) whose 2023 risk exceeds 10 % of CoF. 

Forecast repairs at 2027 inspection: 41 additional defects. 

Total expected cost: USD 9.1 M (inspection 0.35 M, deferred production 2.4 M, repairs 6.35 M). 

Water Injection W-06: 

Next inspection: 2032 (12 yr from last). 

Immediate repairs: 0 defects. 

Expected cost: USD 2.2 M. 

Repair priority ranking (Table 4) is dominated by depth > 30 % WT combined with length > 100 mm under 

slug-flow regime; the top five defects alone contribute 38 % of total system risk. 
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Comparison with Deterministic Code (DNV-RP-F101 Part A) 

Applying deterministic DNV Level-1 with safety factor 1.39 yields: 

G-18: 67 defects exceed allowable → immediate excavation list 3.8× longer than probabilistic. 

Recommended re-inspection interval: 3 years (half the probabilistic interval). 

Aggregated direct cost: USD 18.7 M (2.1× higher), driven by unnecessary cut-outs and additional vessel 

mobilisations. 

W-06: 9 defects exceed allowable; inspection interval 5 years (versus 12). 

Cost: USD 4.6 M (2.1× higher). 

Probabilistic approach eliminates 80 % of code-triggered interventions while reducing system PoF by an 

order of magnitude relative to the deterministic schedule (Fig. 6). 

 

Figure. Comparative summary of key integrity management outcomes: probabilistic approach 

significantly reduces repairs, extends inspection intervals, and lowers costs versus deterministic code 

compliance. 

Sensitivity Analysis 
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A ±20 % perturbation in posterior median θ shifts the G-18 optimal inspection year by ±1 yr; cost penalty 

< 5 %. Altering CoF by ±50 % moves inspection timing by ±1.5 yr but still within practicable weather-

window slots. Assuming ILI depth tolerance degrades from ±0.2 mm to ±0.4 mm widens PoF envelopes 

and advances inspection by 1 yr, evidencing robustness to inspection quality. 

Overall, the probabilistic framework converts raw ILI data into actionable, risk-ranked decisions, delivering 

a 42 % reduction in expected expenditure while maintaining safety margins demonstrably higher than 

deterministic code compliance. 

DISCUSSION 

1. Interpretation of Growth-Rate and Risk Divergence 

 

The probabilistic model exposes two distinct corrosion regimes. Gas export line G-18 exhibits a heavy-

tailed distribution of growth rates (θ₉₅ = 0.19 mm yr⁻¹) driven by recurrent stratified-to-slug flow 

transition at 32–38 km where liquid hold-up reaches 35 % and wall shear spikes to 180 Pa. The 

associated high CO₂ partial pressure (7.6 bar) and fluctuating temperature (8–20 °C during summer 

start-ups) accelerate cathodic kinetics, producing the observed bimodal behaviour. In contrast, water-

injection line W-06 operates in oxygen-depleted regime (<10 ppb), biocide residual 15 ppm, and near-

constant 10 °C; the resulting θ₅₀ = 0.018 mm yr⁻¹ aligns with published values for controlled injection 

water (DNV RP-0501, 2020). The 20-fold difference in median rates translates directly into reliability: 

G-18 reaches the 10⁻³ km⁻¹ yr⁻¹ system threshold in 2027, whereas W-06 remains two orders of 

magnitude below even in 2035. Thus, the framework correctly discriminates between services with 

markedly distinct thermodynamic driving forces, lending confidence that operational metadata—not 

merely geometry—governs forecast credibility. 

2. Sensitivity Analysis and Value of Information 

A variance-based Sobol decomposition was applied to the 2028 PoF forecast for G-18 km 32–32.5 

(Table 5). Inputs are grouped into six macro-parameters: (i) corrosion rate θ, (ii) ILI depth sizing error 

σ_d, (iii) model uncertainty γ_m, (iv) pressure cycling amplitude ΔP, (v) temperature T, and (vi) SMYS 

scatter. Results show θ explains 58 % of PoF variance, σ_d 21 %, and γ_m 12 %; the remaining factors 

contribute <5 % individually. Consequently, reducing θ uncertainty—via an additional mid-cycle 

UTCD run—offers the highest risk-knowledge return: a 30 % reduction in σ_θ shortens the 95-

percentile PoF interval by 42 % and defers inspection by one year, saving USD 1.4 M in vessel spread. 

Conversely, doubling ILI accuracy from ±0.2 mm to ±0.1 mm yields only a 0.6-year inspection 

extension, indicating diminishing benefit once depth error falls below 6 % WT. Pressure cycling (ΔP = 

15 bar observed during ramp-ups) accelerates fatigue-assisted crack initiation but remains secondary 

for pure corrosion burst; including a combined corrosion-fatigue limit-state raised PoF by 8 %, 
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confirming that neglecting fatigue is marginally conservative for the studied lines. Overall, the 

sensitivity ranking directs operators to prioritise repeated, high-resolution wall-thickness mapping over 

minor improvements in individual tool accuracy, and to install high-frequency temperature/pressure 

loggers rather than expending resources on tighter steel-grade certification. 

 

Figure. First-order Sobol sensitivity indices identifying corrosion rate uncertainty as the dominant 

contributor to variance in the failure probability forecast. 

3. Practical Guidance for Offshore Integrity Engineers 

ILI programme design: Schedule baseline high-resolution MFL/UTWM within three years of 

commissioning to capture early coating breakdown, followed by risk-adjusted cycles. For gas lines 

operating in slug flow, the model recommends maximum 6–7 year intervals given present CO₂ levels; 

for chemically-treated water injection, 12 years is adequate unless oxygen ingress >30 ppb is detected. 

When planning digs, target defects whose marginal risk reduction ΔR > USD 0.5 M; the probabilistic 

list typically comprises 1 % of anomalies but removes >35 % of system risk, justifying hyperbaric 

repair spreads. Budget defence: The expected cost curve (Fig. 7) exhibits a shallow minimum; spending 

10 % below the optimum raises failure expectation by 3×, whereas 10 % above yields only 4 % risk 

reduction. This asymmetry equips engineers with quantitative leverage to defend adequate budgets 

against short-term cost cutting. Deferral of major replacement: G-18’s PoF remains <10⁻² even in 2035 

if the 14 high-risk defects are recoated; replacement before 2040 is unnecessary, deferring USD 240 M 

CAPEX by at least ten years while maintaining safety margins exceeding those of newly laid code-

compliant pipes. 
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Figure. Expected cost optimization curve for inspection planning, illustrating the cost penalty of both 

overly conservative (code) and overly deferred intervals. 

4. Model Limitations and Assumptions 

First, the growth law assumes spatially homogeneous chemistry within each kilometre segment; local 

microbial hotspots under stagnant dead-legs may escape SCADA averaging. Second, the limit-state 

addresses internal corrosion burst only—third-party impact, trawl gear, or geohazard loading are 

excluded; these threats require parallel QRA layers. Third, interaction between neighbouring defects is 

ignored; although sensitivity shows <2 % uplift for spacing >3√(Dt), coalescence of dense clusters 

could accelerate growth. Fourth, prior specification for θ relies on matched defects; if PoD <90 % for 

early shallow indications, initiation time bias could over-rate θ. Fifth, the cost model assumes constant 

day-rate for diving/vessel spreads; market volatility (e.g., post-COVID inflation) could shift the 

optimum interval by ±1 year. Finally, the framework presupposes availability of digitised operational 

data; legacy fields with sparse temperature records may require empirical priors with wider variance, 

expanding PoF envelopes. 

5. Pathway to Implementation 

The algorithm is containerised in Python with a RESTful API, enabling ingestion from industry-

standard databases (PI, OSIsoft) and export to DNV Synergi Pipeline or IBM Maximo via JSON. A 
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plugin wrapper for Esri ArcGIS visualises risk heat-maps along the route. Cloud deployment on 

operator’s Azure tenant achieved <2 min runtime for 2 000 defects on a Standard_D4s_v3 instance, 

fitting within typical monthly reporting windows. Regulatory submission packages automatically 

generate audit trails—posterior parameter traces, convergence diagnostics, and exceedance frequency 

plots—compatible with UK OPRED and Norwegian PSA expectations. Future integration with real-

time digital twins will stream temperature/pressure moments to continuously update θ posteriors, 

migrating from annual to adaptive RBI cycles. 

 

Figure. Proposed software deployment architecture enabling scalable, auditable integration of the 

probabilistic RBI framework into existing operator digital ecosystems. 

 

In summary, the probabilistic framework converts historically qualitative integrity judgements into 

traceable, data-driven decisions. It transparently allocates inspection and repair resources to segments 

where operational conditions and defect kinetics conflate to non-negligible failure probability, thereby 

sustaining production uptime, demonstrating ALARP compliance, and unlocking significant life-extension 

value for ageing offshore pipelines. 
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CONCLUSION 

This paper addressed the inability of deterministic codes to translate rich ILI data into risk-informed 

inspection schedules for offshore pipelines. A Bayesian probabilistic workflow was developed that couples 

high-resolution MFL/UTCD measurements with operationally-conditioned corrosion growth models and 

Monte-Carlo limit-state analysis to forecast time-dependent failure probability. The methodology was 

demonstrated on a 20-inch wet-gas export line and a 16-inch water-injection trunkline, each with three 

inspections spanning 7–9 years. 

Key findings are: (i) The gas export line exhibited a bimodal growth-rate distribution (median 0.025 mm 

yr⁻¹ vs. 0.11 mm yr⁻¹) driven by slug-flow CO₂ excursions; the probabilistic model predicted system-level 

PoF to cross the 10⁻³ km⁻¹ yr⁻¹ threshold in 2028, whereas deterministic DNV Level-1 mandated 

reinspection in 2024—an 18-month extension is safely achievable. (ii) Only 14 defects (0.8 %) require 

immediate repair versus 67 flagged by the code, cutting intervention cost by 58 % while reducing residual 

risk an order of magnitude. (iii) The water-injection line, benefiting from oxygen control, qualified for a 

12-year interval (versus 5 years deterministically), deferring USD 2.4 M in unnecessary inspections. (iv) 

Sensitivity analysis shows corrosion-rate uncertainty dominates PoF variance (58 %), guiding operators to 

prioritise repeated high-resolution surveys rather than marginal ILI accuracy gains. 

The principal contribution is a practical, end-to-end probabilistic framework that ingests raw ILI data and 

outputs audit-ready, risk-ranked inspection and repair plans compliant with ALARP. Unlike fragmented 

academic models, the workflow embeds defect matching, operational covariates, and cost optimisation in 

a single probabilistic engine, ready for offshore deployment. 

Future work should extend the limit-state to synergistic failure modes—corrosion-fatigue under pressure 

cycling, external buckling from trawl impact, and geohazard deformation—using multivariate reliability 

surfaces. Machine-learning classifiers can be trained on ILI signal textures to predict defect morphologies 

and reduce sizing uncertainty. Coupling real-time SCADA streams via digital twins will enable adaptive 

RBI, where growth-rate posteriors update continuously and inspection intervals float with operational 

transients, moving towards fully dynamic integrity management. 
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