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ABSTRACT: Maintaining optimal blood pressure is vital for overall health, as deviations from 

normal levels can lead to serious complications. Hypertension is known to damage the 

cardiovascular system and vital organs, while hypotension reduces blood flow, impairing critical 

bodily functions. Effective management strategies, such as lifestyle modifications, regular 

monitoring, and medical interventions, are crucial in mitigating these risks. Mathematical 

modeling plays an integral role in analyzing blood circulation in the human body. By translating 

real-world cardiovascular challenges into mathematical equations, it enables the study of complex 

physiological systems. In this research, the combined effects of heat and blood pressure on blood 

flow through blood vessels were modeled mathematically. The Navier-Stokes equation was 

modified to develop a system of partial differential equations (PDEs) governing blood momentum 

and temperature distribution. The system of PDEs was then scaled into a set of dimensionless 

models and further simplified into Ordinary Differential Equations (ODEs) using oscillatory 

perturbation parameters. Laplace transformation techniques were employed to solve the 

governing equations analytically. The resulting flow profiles were simulated numerically using 

Wolfram Mathematica (Version 12), with variations in key biophysical parameters. key findings 

from the simulation include: An increase in the Prandtl number resulted in decreased temperature 

and velocity profiles. A rise in the Grashof number led to an enhancement in blood velocity. 

Increasing the oscillatory frequency exhibited a diminishing effect on both temperature and 

velocity profiles.  
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INTRODUCTION  

 

Blood flow dynamics in the human body is a complex process influenced by a myriad of 

physiological and environmental factors (Bunonyo et al., 2024). Proper blood pressure regulation 

is essential for health, as deviations from normal levels can lead to critical conditions. 

Hypertension can damage the cardiovascular system and vital organs, while hypotension impairs 

blood flow, leading to the disruption of essential body functions. Among the health risks associated 

with abnormal blood pressure are kidney damage, heart attacks, and other cardiovascular diseases.   

 

One critical area of study is the interaction between temperature gradients, fluid pressure, and 

external forces, such as magnetic fields, on blood flow in microchannels, including capillaries and 

small arteries. Blood flow is essential for nutrient transport, waste removal, and thermoregulation 

in the human body (Butter et al., 2024). Mathematical modeling of blood flow is invaluable for 

studying these processes, enabling the development of medical interventions such as drug delivery 

systems and magnetic resonance imaging (MRI)-guided therapies (Akbar & Shah, 2024).   

 

Blood vessel narrowing also known as stenosis, caused by plaque buildup (a combination of 

cholesterol and cells) disrupts blood circulation and heart function, increasing the risk of heart 

failure. This narrowing not only restricts oxygen-rich blood flow but also affects the temperature, 

pressure, and speed of blood flow through the vessel (Yusuf et al., 2016). Previous studies have 

explored the implications of stenosis on blood flow dynamics. For example, Plourde et al. (2015) 

used numerical simulations to examine how plaque clearance impacts pressure drop and flow 

velocity, while Maruthi (2015) investigated the effects of stenosis and post-stenotic expansion on 

Jeffrey's fluid flow in vessels. Kabir (2021) developed computational models to study blood flow 

in normal arteries and arteries with stenosis, revealing that fluid properties peak at the stenosis site 

and magnify with increasing vessel narrowing.   

 

Temperature also plays a crucial role in blood flow dynamics, as it influences viscosity and thermal 

conductivity. Elevated temperatures reduce blood viscosity, enhancing velocity, while lower 

temperatures slow down blood movement (Bunonyo et al., 2024). Temperature gradients can 

induce thermophoretic effects, altering the motion of particles or solutes in blood and affecting 

flow profiles. Misra and Sinha (2013) studied the effects of temperature radiation on 

magnetohydrodynamic (MHD) fluid movement, while Abubakar and Adeoye (2020) explored the 

role of thermal radiation and magnetic fields in blood flow through tapering stenosed permeable 

channels.   

 

Blood plasma contains various ions like sodium, potassium, calcium, and chloride, which make 

the blood electrically conductive. these charges experience Lorentz forces, leading to changes in 

blood flow dynamics. Magnetic fields significantly affect blood flow due to the paramagnetic 

properties of hemoglobin, the oxygen-carrying molecule in red blood cells. Various researchers 

have studied these effects, including Yadav and Roshan (2024), who conducted computational 

https://www.eajournals.org/


International Journal of Mathematics and Statistics Studies, 12 (5), 54-66, 2024 

 Print ISSN: 2053-2229 (Print),  

                                                                                      Online ISSN: 2053-2210 (Online) 

Website: https://www.eajournals.org/                                                         

                         Publication of the European Centre for Research Training and Development -UK 

56 
 

simulations of blood flow in a circular porous zone, and Sharma et al. (2023), who examined MHD 

hemodynamics in stenosed arterial channels. Oyelami et al. (2021) investigated the thermal effects 

of magnetic fields on symmetrical stenotic arterial blood circulation, while Rashidi et al. (2014) 

analyzed MHD fluid behavior in spinning permeable vessels.   

 

Despite significant progress, there remain gaps in understanding the combined effects of 

temperature, pressure, and magnetic fields on blood flow, especially in stenosed vessels. This study 

aims to address these gaps by developing a mathematical model to analyze the thermo-pressure 

effects on blood flow in the presence of a magnetic field. The findings could enhance biomedical 

device design and therapeutic strategies, including hyperthermia treatments and magnetic drug 

targeting. 

 

MATHEMATICAL FORMULATION 

Let’s consider the following assumptions: The flow is axial; the tangential velocity is assumed to 

be zero; the fluid is blood, incompressible, and viscous; the viscosity is constant throughout the 

fluid medium; the fluid is influenced by the pressure gradient of the fluids; there is no electrical 

conductivity in the system; we considered the effect of an external magnetic field; and the blood 

vessel is porous; the flow obeys the no-slip condition. The mathematical model system is presented 

based on the assumptions made above and previous research by Butter et al. (2024), Bunonyo et 

al. (2018), Bunonyo and Amos (2023), Hanvey & Bunonyo (2022), and Verma and Parihar (2010).  

 

Following the thermal volumetric expansion according to Bunonyo et al. (2018), we have:  

( )*

b b T T T    + = −          (1) 

 

Momentum equation 

Following the aforementioned assumption and the works of Bunonyo & Ndu (2024) and Verma 

and Parihar (2010), we present the momentum equation as:  

( )
* 2 * * *

*

*2 * * *

1
b b b T

w w w P
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t r r r x
    

    
= + + − − +  

    
    (2) 

Heat equation 

Following Bunonyo et al. 2018, the heat equation is:  
* 2 * *

* *2 * *

1
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c k

t r r r
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        (3) 

The equivalent initial and boundary conditions are: 
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DIMENSIONLESS QUANTITIES  
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Scaling equation (2) – (4) using the dimensionless quantities in equation (5), we have: 
2

2
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The corresponding initial and boundary conditions are: 
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        (8) 

 

PERTURBATION SOLUTION  

The flow in the blood channel is oscillatory due to the heart rate, hence, the flow profiles are 

assumed as: 
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Applying equation (9) on equations (6) - (8), we have: 
2
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The corresponding initial and boundary conditions are: 
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where:  2
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METHOD OF SOLUTION 

We shall be stating the Laplace of the profiles mathematically as: 

 

( )  ( ) ( )

( )  ( ) ( )
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        (13) 

Applying equation (13) on equation (11), we have: 
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Further simplification by integrating equation (14), we have: 
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where ( )0 2I r is the modified Bessel function of order zero.  Using the boundary conditions in 

equation (12), we get the constant coefficient as: 

( )0 2

1
t

A
I h e

=           (17) 

Putting equation (17) into equation (16), we have: 
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Substituting equation (18) into equation (9), we have the temperature profile as: 

( )
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2 2 4 4
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Substituting equation (18) into the momentum equation (10) and presenting with a particular 

term, we have:  
2 2 2 3 2 4 5
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0 32 4 64

p p

p

d w dw r r
r rM w r

dr dr

   
+ − = + +     (20) 

https://www.eajournals.org/


International Journal of Mathematics and Statistics Studies, 12 (5), 54-66, 2024 

 Print ISSN: 2053-2229 (Print),  

                                                                                      Online ISSN: 2053-2210 (Online) 

Website: https://www.eajournals.org/                                                         

                         Publication of the European Centre for Research Training and Development -UK 

59 
 

where 
( )
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let the particular solution be in the form:  
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Solving equation (20), we get:  
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Substituting equation (22) into equation (21), we get: 

( ) ( )
2 2 2 2 4
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The homogeneous solution of equation (20) is:  ( )0 0 2hw BI r=    (24) 

homogeneous solution plus the particular solution gives the general solution of equation (20), 

which is:  
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Using the initial and boundary conditions in equation (8), we get: 
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Substituting equation (25) into equation (9), we get: 
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PRESENTATION OF RESULTS 

Haven obtained the analytical solution to the formulated problem, we carried out a numerical 

simulation using Wolfram Mathematica version 12 and in order to validate the analytical solution, 

the parameters data were obtained from previous research carried out by Bunonyo et al. (2024), 

Bunonyo et al. (2021), and Hanvey and Bunonyo (2022), respectively. The results are presented 

as follows:  

 

    

 

 

  

 

 

 

 

 

 

 

 

  Figure 1: The effect of oscillation frequency on the fluid temperature 
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Figure 2: The effect of Prandtl frequency on the fluid temperature 

Figure 3: The effect of Prandtl number on the fluid velocity 
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DISCUSSION OF RESULT 

The graphical result as seen in figure 1 depicts the effect of the oscillatory number 

0.2,0.4,0.6,0.8,1.0 =  where the Prandtl number Pr 21=  and the blood pressure 

0P 120mmHg=   on the fluid temperature. The result is of the view that the temperature was 

maximum when the boundary layer width was zero and raised to the peak at maximum thickness. 

A decrease in temperature profile was noticed before increasing to its peak. Figure 2 and 3 

indicated a reduction in fluid temperature and blood velocity respectively as the oscillatory 

frequency 0.2 = , blood pressure 
0P 120mmHg=  and Prandtl number increased by 

Pr 21,22,23,24,25=  . However, it was also seen that the temperature and fluid velocity began to 

rise as the boundary layer expanded until it reached its maximum. Figure 4 is of the opinion that 

when the Prandtl number is kept at Pr 21= , blood pressure kept at 
0P 120mmHg= , oscillatory 

frequency 0.2 = , and the Grashof number was increased r 15,20, 25,30,35G = , the blood velocity 

was maximum when the boundary layer width was zero and grew to the peak at maximum 

thickness. A decrease in velocity profile was noticed before increasing to its peak. 

 

Figure 4: The effect of Grashof number on the fluid velocity 
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CONCLUSION 

This study investigated the effects of temperature and pressure on blood flow in the presence of a 

magnetic force using a mathematical modeling approach. The governing equations were developed 

and solved analytically, followed by numerical simulations. The results were presented, discussed, 

and summarized, leading to the following conclusions: 

1. Increasing the Prandtl number led to a decrease in both temperature and velocity, indicating 

that higher Prandtl numbers reduce heat and momentum transfer efficiency. 

2. A rise in the Grashof number enhanced blood velocity, demonstrating the role of buoyancy 

forces in augmenting flow within the microchannel. 

3. Variations in oscillatory frequency showed a diminishing effect on both temperature and 

velocity. 

4. Blood pressure variations (P₀ = 120mmHg) acted as a driving force for maintaining flow 

stability.  

 

FUTURE RESEARCH 

For further studies, we recommend extended research to include the interaction of blood flow with 

the elastic walls of vessels, to simulate realistic vascular conditions. 

 

NOMENCLATURE  
* *,w u   Dimensional blood velocity in different directions 

* *,x r   Dimensional axial and radial distances  
*T   Dimensional blood temperature 

P   Dimensionless blood pressure 

T   Far field Dimensional blood temperature 

wT   Dimensionless wall temperature 

w   Dimensionless blood velocity 

0w   Perturbed blood velocity 

b   Blood density 

b   Blood viscosity 

F  Sum of forces acting on the fluid in circulation  

bpc   Blood specific heat capacity 

  Oscillatory frequency  

t    Dimensionless time 
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B   Magnetic induction 
*k   Permeability  

k   Porosity 

0B   Magnetic field intensity 

   Dimensionless temperature 

Tk   Thermal conductivity  

   Dynamic viscosity of the blood 

Tbk    Blood thermal conductivity  

0k    Chemical Reactant 

    Oscillation frequency 

Pr    Prandtl number 

Gr    Grashof number 

Da   Darcy number 

Sr   Soret number 
g    Acceleration due to gravity 

T  Volumetric temperature expansion rate. 
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