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ABSTRACT: It is true that my previous series of papers about the Riemann Hypothesis has raised 

lots of discussions or the concerns among the mathematics society. Indeed, some professionals may 

think that the Riemann Zeta function at s = 1 or ∑
1

𝑛
∞
𝑛=1  is actually divergent and may tend to an 

infinity, how it can be acted as a denominator in a proof or something like 
1

∞
 ? This author’s idea is 

there may be no need to evaluate such kind of summation as one may consider the sum just as an 

(imaginary) constant (but NOT the complex number). Or we may only consider such summation as a 

kind of improper integrals with a black-boxed answer. In other words, the true final value of the 

summation ∑
1

𝑛
∞
𝑛=1  is NOT an concerning serious issue. The function ∑

1

𝑛𝑠
∞
𝑛=1  is in practice a smooth 

function and equals to log N or the logarithmic function for s = 1 or have the infinite differentiable 

properties except n = 0, that is why the commercial software Maple Soft can compute the Zeta 

function’s associated Taylor series successfully. In fact, from the above series together with the 

harmonic properties, one may calculate the artifical Zeta function’s root model equation such as the 

0.5 +/- β*cot(ln(x))/(αx+1)n (will be discussed in my next paper of the series). Indeed, this is NOT 

the best model. Actually, the true Riemann Zeta non-trivial Root model equation is: {z = x + yI | 𝑧 ∈

0.5 ± (𝑦1 ⩽ 𝑦 ⩽ 𝑦2)𝐼} where y1= 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
 with 0<k<2π. Certainly, this author cannot 

avoid mistakes. Some of the defects in the previous paper such as one in the linguistic proof of the RH 

will be stated and amended. Lastly, this author wants to remind that the present series of paper is first 

to establish a model equation for zeta function’s roots and the Plank’s like constant. This author then 

applies the telescopic and logarithmic methods for a 3 cases proof of the RH. Also, we have a Matlab 

code for the evaluation of RH complex contour integral. Finally, the RH problem will be transformed 

into a linguistic one and hence we may have solved the Riemann Hypothesis issue completely through 

a 4 cases of truth table collaborations with the logical inference [7] & [15] to the causality 

(structural) organization of the sentences [16] or just named as “Logical & Organized Context”. 

KEYWORDS: modification, novel toy model, Riemann zeta function, roots equation 

 

INTRODUCTION 

With reference to my prior discussions in my series of papers for the Riemann Hypothesis [1], [2], 

[3], [4] & [5], there may be still some defects which need amendments, modifications and 

clarifications in the present paper. In reality, the first priority of these papers is to establish a root 
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model equations from the well-known Riemann Zeta function ∑
1

𝑛𝑠
∞
𝑛=1   by the Taylor series [1]. 

Certainly, we may select all of the non-trivial zeta roots and thus establish the corresponding root 

model equation for a further evaluation and comparison etc. This author will discuss such matter in 

my future papers of the Riemann research series. Next, this author will try to vertify those known 

non-trivial zeta roots by some Matlab contour integral coding as well as the telescopic method to 

prove the Riemann Hypothesis in a pioneer way. Lastly, this author will employ the mathematical-

linguistic method and turn some corners round to show that the Riemann Hypothesis is true. Or we 

may have solved the Riemann Hypothesis issue completely through a 4 cases of truth table 

collaborations with the logical inference [7] & [15] to the causality (structural) organization of the 

collected sentences [16] for the formulation of a particular meaningful context or just named as 

“Logical & Orgatizated Context”. In practice, such kind of logical organization may be used in 

handling those conjectures or hypothesis like the continuum one or the Riemann one which has 

applications in aerodynamics or the cryptography or many other kinds of everyday life usage like the 

present hot topic of Natural Language Processing in the field of computer engineering. 

 

A Supplementary Revise to this author’s Previous Research 

 

1. For the Root Model Equation of the Riemann Zeta Function [1] 

−3𝑘+𝑥

2(−𝑥+𝑘)
 = 

1

2
 
𝑥−3𝑘

(−𝑥+𝑘)
 

      = 
1

2
 [

𝑥−3𝑘

−(𝑥−𝑘)
] 

      = 
1

2
 |− [1 −

2𝑘

𝑥−𝑘
]|   when we consider it as the locus of circle with centre (1,0) and  

     radius 
1

2
 

      = 
1

2
 as x → ∞  

or 

|
−3𝑘+𝑥

2(−𝑥+𝑘)
|  = 

3

2
  as k → ∞  (rejected as 𝜁 (

3

2
+ 𝑣𝑖) ≠ 0  for all residue values of v as verified by the 

Matlab code  

        in [3] are zeros together with 1.5 lies on the zero free region [25]). 

Also, geometrically, the Riemann Hypothesis may be solved [5] by the DeMoivre’s Theorem of the 

God’s Equation: 𝑒𝜋𝑖 + 1 = 0 with the paired complex roots of conjugate for the complex-valued roots 

of unity equation. 

https://www.eajournals.org/
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That say, there may be some ξx or structures existing between two consecutive ξi and ξj such that ∲ 𝐵 ⋅

𝐴 ≠ 0. If the real part of such ξx  is NOT 0.5, then our cognition about the non-trivial zeros of Riemann 

Hypothesis may need to be reconstructed. Although we may show that there may be another feasible 

root (u = 1.5) in the second order of the Taylor approximation to the Riemann Zeta function, contour 

integral (3/2 + vI) always equals to zero ∀𝑣 ∈ ℝ [], 𝜁 (
3

2
+ 𝑣𝑖) ≠ 0 without any structures lying on 

the line x = 3/2. In between 
1

2
 and 

3

2
, there is a singularity at u = 1 which is obviously a zero free zone 

or no zeros on the line x = 1. In fact, by considering the Dirichlet Eta function [12], [13] & [14] where 

η(s) = (1-21-s)ξ(s), then all of the non-trivial zeta zeros are also the roots of η(s). Similarily, by 

constructing an artifical function, say η1(s) = (1.5-s)ξ(s), then all of the non-trivial zeta zeros are also 

the roots of η1(s) with the additional zeros at x = 1.5 that may be viewed as another singularity 

structure just like the case of x = 1. The focus of the present paper is NOT on the feasible singularity 

structures of η1(s) = (1.5-s) ξ(s). 

In reality, Hx = ∑
1

𝑘

𝑥
𝑘=1  = cot(x) and ξ(σ) = ∑

1

𝑘𝑢±𝑣𝑖
𝑛
𝑘=1   where σ = u+/-vi and 𝑢, 𝑣 ∈ ℝ 

  ∑
1

𝑘𝑢+𝑣𝑖
𝑛
𝑘=1  = ∑ .𝑛

𝑘=1
1

𝑘𝑢
1

𝑘𝑣𝑖
 

     = ∑ .𝑛
𝑘=1

1

(𝑢)𝑒𝑣𝑖𝑙𝑛(𝑘)
, 

then Ɵ = ±𝑣𝑙𝑛(𝑘).  

Thus, the angle difference or the argument between Hx and ξ(σ) is: 

cot (𝑥 − 𝑎𝑟𝑐𝑡𝑎𝑛(±𝑣𝑙𝑛(𝑘))) = 
𝑐𝑜𝑡(𝑥)𝑐𝑜𝑡(𝑎𝑟𝑐𝑡𝑎𝑛(±𝑣𝑙𝑛(𝑘)))−1

𝑐𝑜𝑡(𝑥)+𝑐𝑜𝑡(𝑎𝑟𝑐𝑡𝑎𝑛(±𝑣𝑙𝑛(𝑘)))
 

          = 

𝑐𝑜𝑡𝑥±𝑣𝑙𝑛(𝑘)

±𝑣𝑙𝑛(𝑘)

±𝑣𝑙𝑛(𝑘)𝑐𝑜𝑡𝑥+1

±𝑣𝑙𝑛(𝑘)

 

          = 
𝑐𝑜𝑡𝑥±𝑣𝑙𝑛(𝑘)

±𝑣𝑙𝑛(𝑘)𝑐𝑜𝑡𝑥+1
 

 

In practice, there are infinite many root model equation for the above cotangent equation spreads over 

360o or 2nπ. To cite two cases: 0 & ∞, 

For 
𝑐𝑜𝑡𝑥±𝑣𝑙𝑛(𝑘)

±𝑣𝑙𝑛(𝑘)𝑐𝑜𝑡𝑥+1
 = 0, cot x = ±𝑣𝑙𝑛(𝑘) or v = ±

𝑐𝑜𝑡𝑥

𝑙𝑛(𝑘)
. 

For 
𝑐𝑜𝑡𝑥±𝑣𝑙𝑛(𝑘)

±𝑣𝑙𝑛(𝑘)𝑐𝑜𝑡𝑥+1
 = ∞, ±𝑣𝑙𝑛(𝑘)𝑐𝑜𝑡𝑥 = -1 or v = ±

𝑡𝑎𝑛𝑥

𝑙𝑛(𝑘)
. 

Practically,  
𝑑

𝑑𝑥

𝑙𝑛(𝑥)

𝑡𝑎𝑛(𝑙𝑛(𝑥))
 = 

1

𝑥𝑡𝑎𝑛(𝑙𝑛(𝑥))
 - 
𝑙𝑛(𝑥)[1+𝑡𝑎𝑛2(𝑙𝑛(𝑥))]

𝑥𝑡𝑎𝑛2(𝑙𝑛(𝑥))
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  = 
𝑐𝑜𝑡(𝑙𝑛(𝑥))

𝑥
 - ... 

  = 
𝑙𝑛(𝑙𝑛(𝑥))

𝑥
  

(N.B. By solving 𝑐𝑜𝑡(𝑙𝑛(𝑥)) = 0, one may get x = 𝑒𝜋 2⁄  or x = 𝑒−𝜋 2⁄  or approximate the roots of 

𝑙𝑛(𝑥)

𝑡𝑎𝑛(𝑙𝑛(𝑥))
.) 

𝑑

𝑑𝑥
𝑙𝑛(𝑙𝑛(𝑥)) = 

1

𝑥𝑙𝑛(𝑥)
 . ≈

1

𝑡𝑎𝑛𝑥(𝑙𝑛(𝑥))
  by small angle approximation 𝑥 ≈ 𝑡𝑎𝑛𝑥 

         = 
𝑐𝑜𝑡𝑥

𝑙𝑛(𝑥)
 

But when we take 𝑙𝑛(𝑥) = 
2(𝑥−1)

(𝑥+1)
, then 𝑙𝑛(𝑙𝑛(𝑥)) = 

2(𝑥−3)

(3𝑥+1)
, 

Moreover, we may have three proposed Riemann Zeta Root Equation Model (RZREM): 

𝑑

𝑑𝑥
(−𝑐𝑜𝑡(𝑙𝑛(𝑥))) = 

1

𝑡𝑎𝑛(𝑥)

1

𝑙𝑛(𝑥)
 = 

𝑐𝑜𝑡𝑥

𝑙𝑛(𝑥)
 ----- (Case i: New Expected RZREM) 

𝑑

𝑑𝑥

4𝑐𝑜𝑡(𝑙𝑛(𝑥))

(𝑥+1)2
 = 

−8∗𝑐𝑜𝑡(𝑙𝑛(𝑥))

(𝑥+1)3
+

4∗(−1−𝑐𝑜𝑡(𝑙𝑛(𝑥))
2
)

((𝑥+1)2∗𝑥)
 ----- (Case ii: Old Proposal RZREM) 

𝑑

𝑑𝑥

𝑙𝑛(𝑙𝑛(𝑥))

𝑥
 = 

1

(𝑥2𝑙𝑛(𝑥))
−

𝑙𝑛(𝑙𝑛(𝑥))

𝑥2
 ----- (Case iii: Modified Approximated RZREM) 

(N.B. 
4𝑐𝑜𝑡(𝑙𝑛(𝑥))

(𝑥+1)2
 is a good approximation to 

𝑙𝑛(𝑙𝑛(𝑥))

𝑥2
 as 𝑐𝑜𝑡(𝑙𝑛(𝑥)) ≈ 𝑙𝑛(𝑙𝑛(𝑥)) and (𝑥 + 1)2 ≈ 𝑥2. 

The only thing that we may need is to fine adjust the empirical Riemann Zeta Root Equation 
4𝑐𝑜𝑡(𝑙𝑛(𝑥))

(𝑥+1)2
 

as shown in the coming section. Practically, the model equation 
4𝑐𝑜𝑡(𝑙𝑛(𝑥))

(𝑥+1)2
 is NOT a wrong model as 

the radius of convergence is 0.79 which is smaller than 1. To be precise, it is just one of the feasible 

(empirical) model equation for Riemann Zeta non-trivial roots. We may thus employ Convex 

Optimization or Lagrange Multiplier method to fine adjust it. This author will discuss in my coming 

papers of the same Riemann research series.) 

 

Case i: New Expected RZREM 

When we employ the Taylor Series cot x = 
1

𝑥
−

𝑥

3
 and 𝑙𝑛(𝑥) = 

2(𝑥−1)

(𝑥+1)
 for  

𝑓𝑠𝑜𝑙𝑣𝑒 (|(
(−𝑥2 + 3)

(3 ∗ 𝑥)

(𝑥 + 1)

(2 ∗ (𝑥 − 1))
)|

− |(0.0004319 ∗ 𝑥9 − 0.02216 ∗ 𝑥8 + 0.4869 ∗ 𝑥7 − 5.986 ∗ 𝑥6 + 45.1 ∗ 𝑥5

− 214.5 ∗ 𝑥4 + 638.4 ∗ 𝑥3 − 1134 ∗ 𝑥2 + 1080 ∗ 𝑥 − 395.2)|, 𝑥, −∞. .0) 

https://www.eajournals.org/
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The radius of convergence (value) is -0.001257674845 or | 0.001257674845|. 

Case ii & iii (may act as a control to Case I): 

𝑓𝑠𝑜𝑙𝑣𝑒 ((−8 ∗
𝑐𝑜𝑡(𝑙𝑛(𝑥))

(𝑥 + 1)3
+
4 ∗ (−1 − 𝑐𝑜𝑡(𝑙𝑛(𝑥))

2
)

((𝑥 + 1)2 ∗ 𝑥)
)

+ (−0.0004319 ∗ 𝑥9 + 0.02216 ∗ 𝑥8 − 0.4869 ∗ 𝑥7 + 5.986 ∗ 𝑥6 − 45.1 ∗ 𝑥5

+ 214.5 ∗ 𝑥4 − 638.4 ∗ 𝑥3 + 1134 ∗ 𝑥2 − 1080 ∗ 𝑥 + 395.2), 𝑥, 0. . ∞) 

The answer for case ii is: 6.368727287 

Also, 

𝑓𝑠𝑜𝑙𝑣𝑒 ((
1

(𝑥2 ∗ 𝑙𝑛(𝑥))
−
𝑙𝑛(𝑙𝑛(𝑥))

𝑥2
)

+ (−0.0004319 ∗ 𝑥9 + 0.02216 ∗ 𝑥8 − 0.4869 ∗ 𝑥7 + 5.986 ∗ 𝑥6 − 45.1 ∗ 𝑥5

+ 214.5 ∗ 𝑥4 − 638.4 ∗ 𝑥3 + 1134 ∗ 𝑥2 − 1080 ∗ 𝑥 + 395.2), 𝑥, 0. . ∞) 

The answer for Case iii is: 6.368593478 

Both of the solved answers are nearly the same if we rounded them to 3 decimal places or approximate 

by 6.369. This outcome implies that case ii & case iii indeed may basically be considered as the same 

Riemann Zeta Root Equation Model.  

If we try to compute the radius of convergence (value), we may get: 

𝑓𝑠𝑜𝑙𝑣𝑒 (|(−8 ∗
𝑐𝑜𝑡(𝑙𝑛(𝑥))

(𝑥 + 1)3
+
4 ∗ (−1 − 𝑐𝑜𝑡(𝑙𝑛(𝑥))

2
)

((𝑥 + 1)2 ∗ 𝑥)
)|

− |(0.0004319 ∗ 𝑥9 − 0.02216 ∗ 𝑥8 + 0.4869 ∗ 𝑥7 − 5.986 ∗ 𝑥6 + 45.1 ∗ 𝑥5

− 214.5 ∗ 𝑥4 + 638.4 ∗ 𝑥3 − 1134 ∗ 𝑥2 + 1080 ∗ 𝑥 − 395.2)|, 𝑥, 0. . ∞) 

The radius of convergence (value) for Case ii is: 0.01038875224 

𝑓𝑠𝑜𝑙𝑣𝑒 (|(
1

(𝑥2∗𝑙𝑛(𝑥))
−

𝑙𝑛(𝑙𝑛(𝑥))

𝑥2
)| − |(0.0004319 ∗ 𝑥9 − 0.02216 ∗ 𝑥8 + 0.4869 ∗ 𝑥7 − 5.986 ∗

𝑥6 + 45.1 ∗ 𝑥5 − 214.5 ∗ 𝑥4 + 638.4 ∗ 𝑥3 − 1134 ∗ 𝑥2 + 1080 ∗ 𝑥 − 395.2)|, 𝑥, −∞. .0)  
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The radius of convergence (value) for Case iii is: -0.07725137438 or | 0.07725137438|. 

In brief, it seems that the best Riemann Zeta Root Model Equation is Case i or 
𝑐𝑜𝑡𝑥

𝑙𝑛(𝑥)
. The result is 

therefore consistent with what we may expect as the radius of convergence for it is the smallest among 

the three cases. In reality, all of the other feasible Riemann Zeta Root Model equation may follow the 

above procedure in order to verify its radius of convergence value and check for their feasibility. 

Thus, this author will not repeat for once more. In fact as the true expected model is different from 

the old proposed model, we therefore may need to fine adjusted the old proposed model 
4𝑐𝑜𝑡(𝑙𝑛(𝑥))

(𝑥+1)2
 so 

as achieve its best convergence value together with a suitable Lagrange Multiplier procedure for a 

best optimized value between the interpolated first true  ten imaginary parts of the Riemann Zeta 

roots’ associated polynomial etc.  

Finally, 
4𝑐𝑜𝑡(𝑙𝑛(𝑥))

(𝑥+1)2
 is one of the feasible Riemann Zeta Root Equation Model (for the imaginary part) 

but NOT the best model NOR the wrong model such as the one 
𝑐𝑜𝑡𝑥

𝑙𝑛(𝑥)
 with the least of radius of 

convergence value only. When we compare the above model 
4𝑐𝑜𝑡(𝑙𝑛(𝑥))

(𝑥+1)2
  with 

−8∗𝑐𝑜𝑡(𝑙𝑛(𝑥))

(𝑥+1)3
+

4∗(−1−𝑐𝑜𝑡(𝑙𝑛(𝑥))
2
)

((𝑥+1)2∗𝑥)
, the difference in the first term is 4 and -8 with the (x+1)2 and (x+1)3. That is why 

my old proposed model may be a good approximation to the new expected model of the Riemann 

Zeta Root model. But we may still need to fine adjusted the old proposed model in the next section. 

Indeed, for  

ξ(s) = 
1

1−21−𝑠
∑

−1(𝑛−1)

𝑛𝑠
∞
𝑛=1  --------------- (1)  

by employing the Taylor Series from the Canada Maple Soft Maple,  

we may finally get the corresponding root model: 

s =  

(𝜋2𝑎2 + 2𝐼𝜋𝑎𝑢 + 𝑎𝜋𝐼 − 2𝜋𝑎𝑣 − 2𝐼𝑢𝑣 − 2𝑣𝐼 − 𝑢2 + 𝑣2 + √𝜋2𝑎2 + 2𝐼𝜋𝑎𝑢 − 2𝜋𝑎𝑣 − 2𝐼𝑢𝑣 − 2𝑣𝐼 − 𝑢2 + 𝑣2 − 2𝑢 − 2𝑢)𝑎

𝜋2𝑎2 + 2𝐼𝜋𝑎𝑢 − 2𝜋𝑎𝑣 − 2𝐼𝑢𝑣 − 𝑣𝐼 − 𝑢2 + 𝑣2 − 𝑢
,
(𝜋2𝑎2 + 2𝐼𝜋𝑎𝑢 + 𝑎𝜋𝐼 − 2𝜋𝑎𝑣 − 2𝐼𝑢𝑣 − 2𝑣𝐼 − 𝑢2 + 𝑣2 − √𝜋2𝑎2 + 2𝐼𝜋𝑎𝑢 − 2𝜋𝑎𝑣 − 2𝐼𝑢𝑣 − 2𝑣𝐼 − 𝑢2 + 𝑣2 − 2𝑢 − 2𝑢)𝑎

𝜋2𝑎2 + 2𝐼𝜋𝑎𝑢 − 2𝜋𝑎𝑣 − 2𝐼𝑢𝑣 − 𝑣𝐼 − 𝑢2 + 𝑣2 − 𝑢
,
21+𝑎𝑎𝑙𝑛(2)2 + 4𝑙𝑛(2)2𝑎 + 21+𝑎𝑙𝑛(2) − 4𝑙𝑛(2) + √−4𝑙𝑛(2)4(2𝑎)2𝑎2 + 𝑙𝑛(2)4(21+𝑎)2𝑎2 − 16𝑙𝑛(2)42𝑎𝑎2 + 8𝑙𝑛(2)421+𝑎𝑎2 − 4𝑙𝑛(2)32𝑎21+𝑎𝑎 + 2𝑙𝑛(2)3(21+𝑎)2𝑎 + 16𝑙𝑛(2)32𝑎𝑎 − 8𝑙𝑛(2)321+𝑎𝑎 + 16𝑙𝑛(2)2(2𝑎)2 − 4𝑙𝑛(2)22𝑎4𝑎 + 𝑙𝑛(2)2(21+𝑎)2 + 162𝑎𝑙𝑛(2)2 − 8𝑙𝑛(2)221+𝑎 − 8𝑙𝑛(2)24𝑎 − 16𝑙𝑛(2)2

2𝑙𝑛(2)2(2𝑎 + 2)
,
21+𝑎𝑎𝑙𝑛(2)2 + 4𝑙𝑛(2)2𝑎 + 21+𝑎𝑙𝑛(2) − 4𝑙𝑛(2) − √−4𝑙𝑛(2)4(2𝑎)2𝑎2 + 𝑙𝑛(2)4(21+𝑎)2𝑎2 − 16𝑙𝑛(2)42𝑎𝑎2 + 8𝑙𝑛(2)421+𝑎𝑎2 − 4𝑙𝑛(2)32𝑎21+𝑎𝑎 + 2𝑙𝑛(2)3(21+𝑎)2𝑎 + 16𝑙𝑛(2)32𝑎𝑎 − 8𝑙𝑛(2)321+𝑎𝑎 + 16𝑙𝑛(2)2(2𝑎)2 − 4𝑙𝑛(2)22𝑎4𝑎 + 𝑙𝑛(2)2(21+𝑎)2 + 162𝑎𝑙𝑛(2)2 − 8𝑙𝑛(2)221+𝑎 − 8𝑙𝑛(2)24𝑎 − 16𝑙𝑛(2)2

2𝑙𝑛(2)2(2𝑎 + 2)
 

(N.B. As η(s) = ∑
−1(𝑛−1)

𝑛𝑠
∞
𝑛=1  = (1 − 21−𝑠)ξ(s), then we may have: 

𝜂(𝑠)

𝜉(𝑠)
 = (1 − 21−𝑠) or 

𝜂(𝑠)

𝜉(𝑠)
 + 21−𝑠 = 1.  

Hence, (1.5 – s) =  
𝜂(𝑠)

𝜉(𝑠)
 + 21−𝑠 + 

1

2
 - s or  

3-2s = 2
𝜂(𝑠)

𝜉(𝑠)
 + 22−𝑠 + 1 – 2s,  
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i.e. In terms of η(s) and ξ(s), we may get: 

η1(s) = (3-2s)ξ(s)  

         = 2η(s) + [22−𝑠 – 2s + 1]ξ(s) 

         = 2∑
−1(𝑛−1)

𝑛𝑠
∞
𝑛=1  + [22−𝑠 – 2s + 1] ∑

1

𝑛𝑠
∞
𝑛=1  

η1(s) = [22−𝑠 – 2s + 1]∑
1

𝑛𝑠
∞
𝑛=1  + 2∑

1

𝑛𝑠
∞
𝑛=1  (for n-1 is even, n is odd) or  

η1(s) = [22−𝑠 – 2s + 1]∑
1

𝑛𝑠
∞
𝑛=1  - 2∑

1

𝑛𝑠
∞
𝑛=1  (for n-1 is odd, n is even) 

η1(s) = [22−𝑠 – 2s + 3]∑
1

(2𝑛+1)𝑠
∞
𝑛=1  or η1(s) = [22−𝑠 – 2s - 1]∑

1

(2𝑛)𝑠
∞
𝑛=1 . 

If we employ one of the new expected root model equation 
𝑐𝑜𝑡(𝑥)

𝑙𝑛(𝑥)
  with the Taylor approximation 

(−𝑥2+3)

(3∗𝑥)

(𝑥+1)

(2∗(𝑥−1))
 when x = 2n is even, then we may have: 

η1(s) = [22−𝑠 – 2s - 1]
(3−4𝑠2)

(3∗2𝑠)

(2𝑠+1)

(2∗(2𝑠−1))
 where η1(s) = 0 at s = 

−1

2
 or s = ±

√3

2
 or  

[22−𝑠 – 2s - 1] = 0. Moreover, [22−𝑠 – 2s - 1] = (22−𝑠 - s2) = -5.07799867026 when s = 1+ √2𝐼. 

Similarly, one may calculate s = 1- √2𝐼 for those who feel interested by themselves and this author 

will NOT repeat. In addition, the result is also a real-valued number. Also, the outcome is similar for 

a same process when x = 2n + 1 or odd number for  

[22−𝑠 – 2s + 3] = (22−𝑠 - s2) = -2.11361628 – 4.48970939I when s = 1+ √2𝐼. Similarly, one may 

calculate s = 1- √2𝐼 for those who feel interested by themselves and this author will NOT repeat. In 

addition, the result is also a complex valued number. In practice, the above computational procedure 

is what the process for root of root at η1(s) = 0. Obviously, the above computation is similar to what 

the symmetric properties of the Dirichlet Eta functional equation etc [12],[13] & [14]. In addition, as 

the aforementioned function η1(s) contains odd and even function, they can be expressed in terms of 

sine and cosine functions or in the form of the Quantum fourier transform [17]. Then we may calculate 

the corresponding quantum fourier series  

[18], [19], [20] & [21] which may be used to minimize a quantum system or computer’s noise (but 

NOT applied in the social political areas) [2]. To go a forward step, one may use the HKLam statistical 

model theory to establish the linear regression models [23], [24] for some necessary quantum gate’s 

matrix representation [22]. Hence, we may develop the respective quantum algorithm(s) for 

simulating some feasible quantum device etc. However, this may belong to the field of quantum 

computing or engineering, which is out of the focus of the present paper. (This author may leave the 

above discussion in my future papers when time & conditions are available.) 
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 In reality, this author wants to remark that: 

η1(s) = 2∑
−1(𝑛−1)

𝑛𝑠
∞
𝑛=1  + [22−𝑠 – 2s + 1] ∑

1

𝑛𝑠
∞
𝑛=1  

         = 2 
∑ 𝑒(𝐼(𝑛−1)𝜋)∞
𝑛=1

𝑛𝑠
+ [22−𝑠 – 2s + 1] ∑

1

𝑛𝑠
∞
𝑛=1  

         = -2 +  [22−𝑠 – 2s + 1] ∑
1

𝑛𝑠
∞
𝑛=1  = [22−𝑠 – 2s - 1] ∑

1

𝑛𝑠
∞
𝑛=1   

But [22−𝑠 – 2s – 1] can be solved by the Lambert function from the Maple Soft Personal Edition. This 

may in fact give: 

[22−𝑠 – 2s – 1]ξ(s) where s = 0.7168497884 together with the non-trivial roots of zeta. 

Consequencely, for  

(0.7168497884 – s) = 
𝜂(𝑠)

𝜉(𝑠)
 + 21−𝑠 + 0.2831502116 – s 

By repeating the above process and the Maple Soft Personal Edition, we may get: 

[21−𝑠 – 0.2831502116s – 1]ξ(s) where s = 0.8366974768 together with the non-trivial roots of zeta. 

Repeating the above process once more, we may get s = 0.9048637552, 

Repeat once more, s = 0.9442575914; 

After repeating the above process for five more time, s = 0.9960360493 

Obviously, s will tend to 1 if we continue the above process for a few more times. 

In fact, the sequence for s = {0.7168, 0.8367, 0.9049, 0.9442, …, 0.9960, …} converges to 1. In other 

words, we may approximate any ηx(s) = (x-s)ξ(s) by the above procedure obtain the respective 

converaging sequence. We may define the sequence {an}.1
∞ by: an+1 = an + 

𝑎𝑛

6𝑛
  

As 
𝑎𝑛

6𝑛
 → 0 when n → ∞, then 𝑎𝑛+1 → 𝑎𝑛 or 𝑙𝑖𝑚

𝑛→∞
𝑎𝑛 = 1. 

Radius of Convergence = 
𝑎1

𝑎2
 = 

0.7168497884

0.8366974768
 = 0.8567610257 < 1 

Obviously, given any real number with the decimal places, we may find its corresponding Taylor 

expansion for its product-log or by our Mathematica Home Edition, we may have: 

In: Series[ProductLog[x], {x, 1.5, 1}]  

Out: 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐿𝑜𝑔 [
3

2
] +

2𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐿𝑜𝑔[
3

2
](𝑥−1.5)

3(1+𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐿𝑜𝑔[
3

2
])
+ 𝑜(𝑥 − 1.5)2 

As 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐿𝑜𝑔 [
3

2
] = 0.72586136, we may have the following Taylor Expansion: 

0.72586136 +
2(0.72586136)(𝑥 − 1.5)

3(1 + 0.72586136)
+ 𝑜(𝑥 − 1.5)2 
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We may also get a similar result for the values in both real parts and imaginary parts of any given 

complex numbers or even the non-trivial zeta zeros. In other words, we may approximate all of the 

known non-trivial zeta zeros by the Taylor Expansion of the Product-Log through Mathematica. By 

the way, given any Taylor series of the Product-Log, we may find out its real or complex value 

representation. 

A last few words, when we are talking about the application, the above research Taylor series of the 

Product-Log may be used in the electric circuit analysis together with the commercial pursuit affairs 

etc. But they are out of the present paper’s focus. This author will leave those discussions to other 

interested parties. 

2. For the Case {s = u + vI where 𝑢 ∈ ℝ/{0.5}} [2], [4] & [5] 

As W = 
([𝑢−𝑣∗𝑐𝑜𝑡(𝑥+1)])

(𝑟∗[𝑢∗𝑐𝑜𝑡(𝑥+1)+𝑣])
 , 

 
𝜕𝑊

𝜕𝑥
 = 

([−𝑣∗(−1−𝑐𝑜𝑡(𝑥+1)2)])

(𝑟∗[𝑢∗𝑐𝑜𝑡(𝑥+1)+𝑣])
−

[𝑢−𝑣∗𝑐𝑜𝑡(𝑥+1)]∗[0]+𝑟∗[𝑢∗(−1−𝑐𝑜𝑡(𝑥+1)2)]

𝑟∗[𝑢∗𝑐𝑜𝑡(𝑥+1)+𝑣]2
 

         = 
([−𝑣∗(−1)𝑐𝑠𝑐2(𝑥+1)])∗(𝑟∗[𝑢∗𝑐𝑜𝑡(𝑥+1)+𝑣])−[𝑢−𝑣∗𝑐𝑜𝑡(𝑥+1)]∗[[0]+𝑟∗[𝑢∗(−1−𝑐𝑜𝑡(𝑥+1)2)]]

𝑟∗[𝑢∗𝑐𝑜𝑡(𝑥+1)+𝑣]2
 

= 
([−𝑣∗(−1)∗𝑐𝑠𝑐2(𝑥+1)])∗(𝑟∗[𝑢∗𝑐𝑜𝑡(𝑥+1)+𝑣])−[𝑢−𝑣∗𝑐𝑜𝑡(𝑥+1)]∗𝑟∗[𝑢∗(−1)∗𝑐𝑠𝑐2(𝑥+1)]

𝑟∗[𝑢∗𝑐𝑜𝑡(𝑥+1)+𝑣]2
 

= 𝑐𝑠𝑐2(𝑥 + 1)
[[𝑣(𝑟(𝑢𝑐𝑜𝑡(𝑥+1)+𝑣))]−[𝑢−𝑣𝑐𝑜𝑡(𝑥+1)]∗(−𝑟𝑢)]

𝑟∗[𝑢∗𝑐𝑜𝑡(𝑥+1)+𝑣]2
 

= 
𝑟(𝑢2+𝑣2)𝑐𝑠𝑐2(𝑥+1)

𝑟∗[𝑢∗𝑐𝑜𝑡(𝑥+1)+𝑣]2
 = 

(𝑟2)𝑐𝑠𝑐2(𝑥+1)

[𝑢∗𝑐𝑜𝑡(𝑥+1)+𝑣]2
 

For 
𝜕𝑊

𝜕𝑥
 = 0, we may have 𝑐𝑠𝑐2(𝑥 + 1) = 0 or 𝑐𝑜𝑡2(𝑥 + 1) = −1 

i.e. 𝑐𝑜𝑡(𝑥 + 1) = ±𝐼 

1

𝑥+1
−

𝑥+1

3
 = ±𝐼 or 

- x2 + (-2 ±3)I x + (-2 ±3) =0 

x = 
−(−2±3)𝐼±√[(−2±3)𝐼]2+4(2±3𝐼)

−2
  

x = 
−1𝐼±√7±3𝐼

−2
 or x = 

5𝐼±√13±3𝐼

−2
 

W2 = 
[4∗𝑥2]∗[(𝑥−1)2]+[4∗(𝑥+1)2]∗[(𝑥−2)2]

2[4(𝑥−1)2]∗[4(𝑥−2)2]
 

      = 0 

solve([4 ∗ 𝑥2] ∗ [(𝑥 − 1)2] + [4 ∗ (𝑥 + 1)2] ∗ [(𝑥 − 2)2], x, explicit, allsolutions) 
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x = 
1

2
+

√(3)∗

√
  
  
  
  
  

(

  
 
((251+6∗√(1689))

(
2
3
)
+5∗(251+6∗√(1689))

(
1
3
)
+13)

(251+6∗√(1689))
(
1
3)

)

  
 

6
±

1

6
[√3 ∗ 𝐾] + 𝑘1 or 

x = 
1

2
+

√(3)∗

√
  
  
  
  
  

(

  
 
((251+6∗√(1689))

(
2
3
)
+5∗(251+6∗√(1689))

(
1
3
)
+13)

(251+6∗√(1689))
(
1
3)

)

  
 

6
±

1

6
[𝐼√3 ∗ 𝐾] + 𝑘1 

Hence, some of the w’s values obtained may be real number as well as some of the w’s values are 

complex number. But there may be a simple and interesting result as follow: 

4𝑥2+4(𝑥−2)2
(𝑥+1)2

(𝑥−1)2

2(4)(4
(𝑥−2)2

(𝑥−1)2
)

, when x → ∞, both 
(𝑥+1)2

(𝑥−1)2
 and 

(𝑥−2)2

(𝑥−1)2
 → 1, 

then 
4𝑥2+4(𝑥−2)2

(𝑥+1)2

(𝑥−1)2

2(4)(4
(𝑥−2)2

(𝑥−1)2
)

 → 
4𝑥2+4(𝑥−2)2

32
, 

when x = 0 or x = 2, 
4𝑥2+4(𝑥−2)2

32
 → ±

1

2
 

If x = 
1

2
, then Primej+1 – Primej = 

(
1

𝑠
)(
1

𝑗
)((2)(

1

√2
)(𝑃𝑗−1)+(

1

𝑗
))

(
1

2
)(
1

2
)𝑃𝑗

2𝑃𝑗−1
2 −[

1

2
𝑃𝑗
2+

1

2
𝑃𝑗−1
2 ]+1

. 

 

By taking limit j tends to infinity and (1 / 1 + 𝑙𝑛(𝑗)) ≤ Pj ⩽ (1 / 𝑙𝑛(𝑗)), [W4(Pj)
2(Pj-1)

2 – W2[(Pj)
2 +(Pj-

1)
2] + 1] tends to 1 and 2W* Pj-1 tends to zero. 

The final result of the prime gap will still be a complex number as the prime gap equal to: 

Prime j – Prime j-1 = {[-1 / (u+vI)*j]* (1/j)]} = 
−1

(𝑢+𝑣𝐼)
 

which is still a complex number or a contradiction. There is a similar outcome for  

x = −
1

2
, this author will NOT repeat. 
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3.A Revisited (or a modificaion/correction) Extended Proof to the Riemann Hypothesis by the 

Truth table [2], [4] & [5]: 

Beside the truth table in figure 1 [5] & [6], we also define the following truthness and falseness:  

Non-trivial Zeta Zeros True (T) Lie on the critical line True (T) 

Other Normal Complex Number False (F) Lie outside the critical line False (F) 

Figure 1: An additional truth table for the proof of Riemann Hypothesis. 

   

Case I: the (assumption) truth for the Riemann Hypothesis statement gives a positive true result and 

hence implying RH is correct (i.e. true & true imply true – row one of Figure 1 [5] & [6]). Or to be 

precise: 

(∀ non-trivial Zeta Zeros) is true → (lie on the critical line) is true, then the prescribed (or the Riemann 

Hypothesis) statement is true; 

In other words, we want to show for all non-trivial Riemann Zeta zeros, they must not lie outside 

the critical the critical line [8] & [9]. The proof for the Riemann Hypothesis is said to be true has 

been shown as in my previous paper [4] by employing Matlab programming code for the verification 

[3] all over the complex infinity plane except the line x = 1 which is a singularity and hence has an 

infinite many solutions or infinite many cases [10] & [11]; 

 

Case II: the (assumption) false for the Riemann Hypothesis statement gives a positive true result and 

hence implying RH is correct (i.e. false & true imply true – row two of Figure 1 [5] & [6]). Or to be 

precise: 

(∀ other complex-valued numbers excluding the non-trivial zeta zeros) (i.e. negation to the non-trivial 

zeta zeros) is false → (lie on the critical strip) is true, then the prescribed (or the Riemann Hypothesis) 

statement (i.e. all non-trivial zeta zeros must lie on the critical line) is true.  

In other words, we want to show that ∀ other normal complex values (i.e. by excluding those 

non-trivial zeta zeros), they must lie on the critical line [8] & [9]. As shown in this author’s 

previous paper named “The Quantized Constants with Remmen’s Scattering Amplitude to Explain 

Riemann Zeta Zeros” [1] and the former section in the present paper, the Riemann non-trivial zeta 

root equation is  

0.5 + (𝑦1 ⩽ 𝑦 ⩽ 𝑦2) I where y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
. However, the root equation is NOT the whole 

x = 0.5 line or the equation 0.5 ± 𝑦𝐼 where 𝑦𝑖𝑠𝑡𝑟𝑢𝑒∀ℝ. Actually, the imaginary part of the non-trivial 
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zeta zeros or their y’s equation is spreading between 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
 and 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
 but NOT for all y = ℝ (that 

covers all of the imaginary axis when x = 0.5). Thus, we may obviously conclude that 

   
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
⩽ 𝑦 ⩽

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
  and the imaginary parts of the other normal complex number   -- 𝑦 ∉

(
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
,
±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
) constitute the whole critical strip x =0.5. Or ∀ other normal complex numbers, such 

that  

{z | 𝑧 ∈ 0.5 ± ℝ (𝑦1 ⩽ 𝑦 ⩽ 𝑦2)⁄ 𝐼} where y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
 and they lie on the x = 0.5, (with 

excluding those non-trivial zeta zeros). Or  

{z = 0.5+yI | ℑ(𝑧) ∉ (𝑦1 ⩽ 𝑦 ⩽ 𝑦2)𝐼} where y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
 must lie on the critical line x 

= 0.5 but NOT those non-trivial zeta zeros 𝑦 ∈ (𝑦1, 𝑦2) where y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
 [10] & [11]. 

 

Case III: the (assumption) true for the Riemann Hypothesis statement gives a negative false result 

and hence implies RH is incorrect (i.e. false & true imply false – row two of Figure 1 [5] & [6]). Or 

to be precise: 

(∀non-trivial zeros) is true → (not lie on the critical line) which is a false outcome, then prescribed 

(Riemann Hypothesis) statement is false. 

In other words, we want to prove that for all non-trivial zeta zeros must not lie on the critical 

line is false. (i.e. This may imply all non-trivial zeta zeros must lie on the critical line.) [8], [9] 

First, let us consider the normal complex numbers [7], [15], [16] 

{z | 𝑧 ∈ 𝑥 + 𝑦𝐼𝑓𝑜𝑟𝑥 ≠ 0.5} (i.e. There are infinite many complex numbers that lie outside the critical 

line. Or NOT all normal complex numbers must lie on the critical line x = 0.5. In other words, there 

are some other kind of complex number lie on the critical line x = 0.5. But there are only two types 

of complex numbers, that says, normal complex numbers and non-trivial Riemann Zeta zeros. Hence, 

there are some non-trivial Riemann Zeta zeros existing on the critical line x = 0.5 or the existance of 

the non-trivial Riemann Zeta zeros lie on the critical line x = 0.5.) [10] & [11] 

Although practically, we cannot directly determine whether there may be any non-trivial zeta zeros 

lie outside the critical line, this author notes that there are actually infinite many counter examples 

(or the disproof) for the above statement “for all of the non-trivial zeta zeros must not lie on the 

critical line”. This is because as shown in my paper named , “The Quantized Constants with 

Remmen’s Scattering Amplitude to Explain Riemann Zeta Zeros” [1] and the former section in the 

present paper, the Riemann non-trivial zeta root model equation is: 
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{z | 𝑧 ∈ 0.5 ± (𝑦1 ⩽ 𝑦 ⩽ 𝑦2)𝐼} where y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
  

which are infinitely many lie on the critical line x = 0.5.   

 Indeed, the above Riemann Zeta non-trivial root model equations are just the (infinitely many) 

counter examples (or the disproof) to the aforementioned statement or “for all of the non-trivial zeta 

zeros must not lie on the critical line” [7], [15] & [16]. But we cannot find any example of the non-

trivial zeta zeros lies outside the critical line. Hence, the statement for all (non-trivial zeros) is true 

→ (not lie on the critical line), which is a false/negative (the negotation of being lie on the critical 

line) outcome (but NOT the statement is false), then the prescribed (Riemann Hypothesis) statement 

(i.e. “for all of the non-trivial zeta zeros must not lie on the critical line”) is said to be a false as 

only one counter example for disproof of the statement will be enough but now we have infinite many 

counter examples to disprove it.  

 

Case IV: the (assumption) false for the Riemann Hypothesis statement gives a (negative) false result 

and hence implying RH is true (i.e. false & false imply true – row four of Figure 1 [5] & [6]). Or to 

be precise: 

(for all normal complex numbers) is false (or the negation of the non-trivial zeta zeros) → (not lie on 

the critical line) or which is a false outcome, then prescribed (Riemann Hypothesis) statement is true.   

In other words, we want to show that for all of the normal complex values, that lie outside the 

critical line implies the Riemann Hypothesis is true (i.e. all non-trivial zeta zeros must lie on the 

critical line). [8] & [9]   

The proof from the aforementioned Case III tells us that, there are NO non-trivial zeta zeros lies 

outside the critical line or all of the non-trivial zeta zeros must lie on the critical line. That say, there 

are some normal complex values  

{z | 𝑧 ∈ 𝑥 + 𝑦𝐼𝑓𝑜𝑟𝑥 ≠ 0.5} other than the non-trivial zeta zeros, lie outside the critical line, is correct. 

In fact, both of the above Case II & Case III tell us that there are both non-trivial zeta zeros and 

normal complex numbers {z | 𝑧 ∈ 0.5 ± ℝ (𝑦1 ⩽ 𝑦 ⩽ 𝑦2)⁄ 𝐼} where y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
 lie on 

the critical line. However, from the Case III, all of the non-trivial zeta zeros must NOT lie outside the 

critical line. In other words, all of the complex numbers that lie outside the critical line must be a 

normal one {z | 𝑧 ∈ 𝑥 + 𝑦𝐼𝑓𝑜𝑟𝑥 ≠ 0.5 } but NOT those that lie between the non-trivial zeta zeros {z 

| 𝑧 ∈ 0.5 ± ℝ (𝑦1 ⩽ 𝑦 ⩽ 𝑦2)⁄ 𝐼} where y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
. Hence, all of the normal complex 

values, that lie outside the critical line is true implies, the Riemann Hypothesis, all of the non-
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trivial zeta zeros must lie on the critical line x = 0.5 is true.  [10] & [11] Actually, the normal 

complex numbers are distributed all over the real-complex plane no matter x = 0.5 or NOT 0.5 and  

{z | 𝑧 ∈ 0.5 ± ℝ (𝑦1 ⩽ ℑ(𝑧) ⩽ 𝑦2)⁄ 𝐼} where y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
 (i.e. other normal complex 

numbers but NOT Riemann Zeta non-trivial zeros lie on the critical line)   

Or {z | 𝑧 ∈ 𝑥 + 𝑦𝐼𝑓𝑜𝑟𝑥 ≠ 0.5 } and {z | 𝑧 = 0.5 + 𝑦𝐼 ∉ (𝑦1 ⩽ 𝑦 ⩽ 𝑦2)𝐼}where y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
 are actually independent of the critical strip and distribute all over the real-complex plane. On 

the contrary, all of the non-trivial zeta zeros or the Riemann Zeta Root model equation, 0.5 ±

(𝑦1 ⩽ ℑ(𝑧) ⩽ 𝑦2)𝐼 where y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
 depends or lies on the critical strip x = 0.5.  

    

(N.B. From my previous paper named “A Full & Detailed Proof” [4] case 1, it shows that if s = 1, 

then when we substitute it into some of the well-known Riemann equations such as ∏ (𝑧 − 𝑧𝑖)
∞
𝑖=1  = 

ξ(1) = ∑ 1∞
𝑛=1 𝑛⁄   = ∏ (1 − 1 𝑝𝑟𝑖𝑚𝑒𝑗⁄ )

−1∞
𝑗=1   , it will give out a fractional number which is a 

contradiction to the fact that the prime gap must be an integer. Similarly, for the same paper’s case 2, 

with ξ(s) where {s = u + v*I and  

u, v are real numbers with I = √−1 }/{0.5+y*I) for some y belongs to real}, the prime gap will be a 

complex number which is also a contradiction to the fact that it must be an integer. Then there must 

be no non-trivial zeta zeros lie outside the critical line  

x = 0.5. In addition, for s = 1, it is actually a singularity for the Riemann Zeta function ξ(s). Finally, 

as described in my present paper’s previous sections, for another critical line x = 1.5, it should be 

rejected. This is because all of the contour integrals computed from the Matlab code by the “A 

Vertification” [3] give us those residuals are just zeros without any multiples of the π. Thus, we may 

have the following position map in the figure 2 [27], for the most recent known important locations 

as depicted aforementioned.) 

 To sum up, this author may have used the skill of mathematical-linguistics, Riemann Zeta 

Root Model Equation -- 
1

2
 ±ℑ(𝑧)𝐼 where Im(z) spreads between 

 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
 and 

±𝑡𝑎𝑛(𝑥)

𝑙𝑛(𝑥)
 for  0 ≤ 𝑘 ⩽ ∞ together with the assistance of the truth table  

(figure 1 [5], [6] & also figure 1 of this paper), to prove the correctness of the Riemann Hypothesis. 

As shown from the aforementioned Case I to Case IV together with the first two case in the [5] , this 
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author thus have confidence to propose that the Riemann Hypothesis is true or all of the Riemann 

non-trivial zeta zeros must lie on the critical strip x = 0.5.  

Hence, we may conclude and have the following theorem: 

 

“All of the non-trivial zeta zeros must lie on the critical strip x =0.5 if and only if there are infinite 

many counter examples  0.5 ± (𝑦1 ⩽ ℑ(𝑧) ⩽ 𝑦2)𝐼 where y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
 and 0 < k < 2π, 

for the disproof to the non-trivial zeta zeros lies outside the critical strip x = 0.5”. 

In practice, we prove the above theorem by [1] – [5] and the present paper: 

“ If part”: 

All non-rivial zeta zeros lie on the critical implies non-existence of non-trivial zeros lie outside the x 

= 0.5. Or there are inifinite many counter examples for the disproof of the non-trivial zeta zeros lie 

outside the critical strip or  0.5 ± (𝑦1 ⩽ ℑ(𝑧) ⩽ 𝑦2)𝐼 where y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
 and 0 < k < 2π. 

“ Only-if part”: 

Already proved in the present paper’s Case III. 

Therefore, obviously, the Riemann Hypothesis has been proved to be true. 
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Hypothes

is X 

Consequen

t Y 

Conditional X → Y Reason(s) for the true/false of the 

conditional & the implication(s) to RH 

True (T) True (T) True (T) Matlab-Code Verification [3] 

False (F) True (T) True (T) The best Riemann Zeta non-trivial Root 

model equation is: {z = x + yI | 𝑧 ∈ 0.5 ±

𝑦1 ⩽ 𝑦 ⩽ 𝑦2𝐼 }, there are other complex 

numbers such that {z = 0.5+yI | ℑ(𝑧) ∉

𝑦1 ⩽ 𝑦 ⩽ 𝑦2𝐼} lie on the critical strip x = 

0.5. 

True (T) False (F) False (F) There are infinite many counter examples 

{z | 𝑧 ∈ 0.5 ± 𝑦1 ⩽ 𝑦 ⩽ 𝑦2𝐼 }to the fact 

that non-trivial zeta zeros must lie outside 

the critical strip x= 0.5. Otherwise, any 

outside critical strip non-trivial zeta zeros 

-- ξ(1) & ξ(s) where s = {z | z = u + vI & 

𝑧 ∉ 0.5 ± 𝑦𝐼  for 𝑢, 𝑣 ∈ ℝ } will lead to 

either a fractional or a complex prime gap 

value contradictions. (Case I & Case II in 

[4]. In fact, we still CANNOT find any 

example(s) /value(s) /evidence(s) for the 

non-trivial zeta zeros to be lie outside x = 

0.5 even we employ the Matlab code in [3] 

for any essential & necessary 

verification.) We may conclude there is no 

non-trivial zeros lie outside x = 0.5. 

False (F) False (F) True (T) Only {z | 𝑧 ∈ 𝑥 + 𝑦𝐼𝑓𝑜𝑟𝑥 ≠ 0.5 } lies 

outside the critical strip x = 0.5 without 

any non-trivial zeta zeros but NOT {z | 

𝑧 ∈ 0.5 ± ℝ (𝑦1 ⩽ 𝑦 ⩽ 𝑦2)⁄ 𝐼}lies on the 

critical strip x = 0.5. 
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Table 3: The 4 cases statement truth table and their summerized reasons for why & how to determine 

the “Truthness of the Riemann Hypothesis” for y1 = 
±𝑐𝑜𝑡(𝑘)

𝑙𝑛(𝑘)
, y2 = 

±𝑡𝑎𝑛(𝑘)

𝑙𝑛(𝑘)
 & 0<k<2π.  

  

(N.B. In fact, logarithm is the mirror image inverse of the poly-logarithm and exponential is also the 

mirror image inverse of the logarithm. This result implies that we may express the Riemann Zeta 

function (a type of poly-logarithm) in terms of an exponential (Taylor) series. We may apply the 

Taylor approximation series method for the Riemann Zeta function ∑
1

𝑛𝑠
∞
𝑛=1  as it is differentiable for 

s < 1 but NOT equal to 1 although it is well known for the sum of the Zeta function’s divergence over 

s < 1 and s equal to 1. In reality, the Riemann Zeta function has a singularity at s = 1 or ∑
1

𝑛
∞
𝑛=1  which 

is undefined (i.e. divergent or tends to an infinity). In practice, when we treat the value of the improper 

integral ∑
1

𝑛
∞
𝑛=1  as a black-box, then we may avoid the undefined value for the computation to the 

above equation for the division in 1 / ∑
1

𝑛
∞
𝑛=1  or 

1

∞
 may be viewed as a kind of “dark art”. In addition, 

when n = 0, the Riemann Zeta function ∑
1

𝑛𝑠
.
.  will also tend to an infinity or undefined. In such of both 

cases, we cannot apply the Taylor Approximation series at n = 0. Thus, my previous determined non-

trivial zeta root model equation 0.5 +/- 4*cot(ln(x))/(x+1)2 becomes invalid. In reality, the harmonic 

series ∑
1

𝑛
𝑁
𝑛=1   = log N may be trapped between y = ∑

1

𝑛+1
𝑁
𝑛=0   and y = 1 + ∑

1

𝑛
𝑁
𝑛=1   [14] while both 

∑
1

𝑛+1
𝑁
𝑛=0  and 1 + ∑

1

𝑛
𝑁
𝑛=1  are smooth functions and thus can be differentiated infinitely. Hence, one 

may apply the corresponding commercial software Maple computed Taylor series to the harmonic 

series ∑
1

𝑛
𝑁
𝑛=1  successfully as the logarithmic function is indefinitely differentiable.)  

 

A Conclusion for the Proof to the Riemann Hypothesis 

 In a nutshell, this author may have solved the Riemann Hypothesis problem. In fact, this 

author handles the problem by the following algorithm or procedure: 

1. Employ the commercial mathematical software such as the Canada’s Maple-soft to find the root 

model for the Riemann Zeta Function; 

2. Use the telescopic logarithmic method to determine if there may be any contradictions for the 

prime gap difference; 
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3. Develop a Mat-lab coding for checking the contour integral in order to approximately locate the 

non-trivial roots of Riemann Zeta function; 

4. Apply the mathematical-linguistic (truth table) method to prove and disprove the statement of 

Riemann Hypothesis and hence conclude the truth of the Riemann Hypothesis; 

5. Conclusive summary of how & why the Riemann Hypothesis has been solved. 

Practically, proof or disproof the Riemann Hypothesis statement is NOT an easy task. One may 

need to overcome lots of barriers in the aforementioned procedure. In fact, rather than proving 

the RH statement, this author also finds that there may be some structures lying between the x = 

0.5, x = 1 and x = 1.5. In addition, there are also some other structures or patterns for the random-

ness of those non-trivial zeta zeros together with the dual of these zeros or the prime numbers. 

This author hopes through the research of the Riemann Hypothesis conjecture and if conditions 

are available, this author or those interested parties may further investigate the structures to the 

random-ness of the non-trivial zeta zeros together with their prime duals, then, we may finally 

develop a novel system of the quantum lattice cryptography or at least have some contributions 

for such a proposed issue.  

In reality, this author concludes that he may have solved the Riemann Hypothesis conjecture by the 

above prescribed five steps. In fact, the practical Riemann non-trivial Zeta root model equation is: {z 

= x + yI | 𝑧 ∈ 0.5 ± (
±𝑐𝑜𝑡(𝑥)

𝑙𝑛(𝑥)
⩽ 𝑦 ⩽

±𝑡𝑎𝑛(𝑥)

𝑙𝑛(𝑥)
) 𝐼 where 0<x<2π}. At the same time, 0.5 ±

4𝑐𝑜𝑡(𝑙𝑛(𝑥))

(𝑥+1)2
 is 

another best approximation or the artifical one to the Riemann zeta function’s root model equation. 

We shall discuss the issue of how to the optimize the artifical model equation together with the 

elliptical problem of the (quantum) lattice for the topic of cryptography in my next paper of the series. 

Certainly, with reference to my paper in algorithmic continuum flow chart, we may develop the 

corresponding one for the Riemann Hypothesis according to the aforementioned 4 amended cases 

plus the 2 previous cases [5]. Then we may develop the respective computer programming code to 

simulate the RH problem solver’s six cases. However, such issuse is out of the focus of the present 

paper, this author will leave it to those interesting parties.   
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