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ABSTRACT: This research study the behaviour of the correction of Black-Scholes portfolios 

based on historical stock price data. We build a model that simulates one sample path of the stock 

price stochastic process at discrete time steps and track the correction over a time interval as it 

relates to the change in stock price over time. We also study the effect that relaxing this assumption 

has on the self-financing property of the replicating portfolio. We show that as the frequency of 

the time steps increases, the correction is more likely to be close to 0. We also show that the 

majority of historical stock return series that studied have caused the replicated portfolio to have 

a positive correction. We conclude that the Black-Scholes model can be used to find the no-

arbitrage rational price for an option, a financial instrument that derives its value from the value 

of an underlying asset. 

KEYWORDS: stochastic calculus, Black-Scholes, stock price, financial mathematics, asset 

 

INTRODUCTION 

Before delving into stochastic calculus, it's beneficial to revisit the foundational concepts of 

traditional differential and integral calculus. The core of calculus lies a profound notion: the ability 

to determine a function's values based on its rate of change (Gregory, 2014). To illustrate, consider 

a scenario where f (t) represents the position of a particle in one dimension at time t, and we possess 

information regarding the rate of change. 

df (t) = c(t, f(t))dt             (1) 
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         (2) 

At any given time t, the graph of t shifts by an infinitesimal increment along a straight line with a 

slope determined by c (t, f (t)). This exemplifies a differential equation, where the rate of change 

relies on both time and position. When provided with an initial condition such as f (0) = 𝑥0, and 

subject to certain assumptions about the rate function c, the function can be defined and expressed 

as follows: 

         (3) 

Occasionally, it's feasible to perform integration and precisely calculate the function. However, 

when exact solutions evade us, leveraging computational methods becomes indispensable. One 

such straightforward approach is Euler's method, where we select a small increment Δt and express 

the process as follows: 

f ((k + 1)∆t) = f(k ∆t) + ∆tc(k∆t, f(k∆t))       (4) 

Stochastic calculus operates on a similar principle, but with the incorporation of randomness into 

the change. In essence, we aim to decipher equations like the following: 

dXt = m(t, Xt)dt + σ(t, Xt) dBt         (5) 

Here, Bt represents a standard Brownian motion. This equation exemplifies a stochastic differential 

equation (SDE). We interpret this equation as indicating that at time t, Xt evolves akin to a 

Brownian motion with a drift m(t, Xt) and a variance of [σ(t, Xt)]2.  One approach is the stochastic 

Euler method, which relies on Monte Carlo simulations of the process. As outlined by Gregory F. 

L (2014), the formula for this method is: 

√X((k + 1)∆t) = X(k∆t) + ∆tm(k∆t, X(k∆t)) + ∆tσ (k∆t, X(k∆t))Nk.    (6) 

where Nk is a N(0,1) random variable. 

In our formulation, our focus is primarily on delineating the stochastic integral. We define Xt as a 

solution to equation (1.1.1) if: 

      (7) 

The ds integral aligns with the conventional integration from calculus; while the integrand m(s,Xs) 

incorporates randomness, this doesn't pose any hurdles in defining the integral. Our primary 

challenge lies in ascribing precise significance to the second component, and more broadly, to: 
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           (8) 

Among the array of methods available for stochastic integration, the one most prevalent in 

financial mathematics is the Itoˆ integral approach. 

Over the past quarter-century, financial markets have undergone profound evolution. The advent 

of financial derivatives like options and futures on various underlying (stocks, bonds, currencies) 

has ushered in a new era of securitizing financial risks. The fundamental concept behind financial 

derivatives is to procure insurance for volatile assets through market participation, thereby seeking 

counterparts willing to share the risks and potential profits of uncertain future market 

developments. The pricing of these financial instruments hinges on sophisticated mathematical 

frameworks, notably Itoˆ stochastic calculus. 

At the core of this mathematical theory lies the depiction of uncertain prices through Brownian 

motion and associated differential equations. The groundbreaking work of Black, Scholes, and 

Merton in 1973, particularly their Nobel Prize-winning Black-Scholes formula for pricing 

European call options, marked a pivotal moment in understanding and valuing financial 

derivatives. Their pioneering approach laid the groundwork for modern financial mathematics, 

leveraging advanced methodologies such as martingale theory and stochastic control to address 

the pricing challenges posed by an exponentially growing array of derivatives worldwide. Black 

Scholes, and Merton approached the task of pricing options with a perspective akin to that of 

physicists, employing rigorous mathematical reasoning to unlock insights into the complex 

dynamics of financial markets. They embarked on their journey by postulating a rational model 

for the pricing dynamics of a risky asset, a pursuit with a lengthy historical backdrop. Empirical 

investigations, rooted in statistical and econometric analyses, have revealed the limited 

predictability of future price changes by mathematical models. This observation is encapsulated in 

the economic literature as the "random walk hypothesis," suggesting that prices follow a random 

path over discrete, equidistant time intervals. In finance, however, the focus is predominantly on 

modeling prices continuously over time, leading to the concept of continuous-time models. 

Brownian motion emerges as a natural counterpart to the discrete random walk in continuous time. 

Originating as a physical model describing the motion of tiny particles suspended in a liquid, 

Brownian motion has been subject to study in the physics domain since the early 20th century, 

with luminaries like Albert Einstein contributing to its theoretical framework (1905). In the work 

of Black Scholes, and Merton (1973), geometric Brownian motion serves as the foundational 

mathematical model for price dynamics. They astutely recognized the profound connection 

between Brownian motion and a sophisticated mathematical theory known as stochastic or Itoˆ 

calculus, named after the Japanese mathematician Kiyosi Itoˆ, who pioneered its development in 

the 1940s. 
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Early studies investigating market price behaviour suggested the presence of long-term 

dependencies in price correlations, implying the existence of stochastic memory in asset returns. 

Such a phenomenon challenges the efficiency of markets in swiftly arbitraging new information, 

potentially allowing abnormal profits based on past information. This perspective contrasts with 

the efficient market hypothesis. However, subsequent studies employing advanced statistical 

methodologies have found that financial returns in major liquid markets exhibit no significant 

memory, as evidenced by correlation functions of price increments approaching zero for time 

periods longer than 15 minutes (Cheung and Lai, 1993; Crato, 1994; Fung and Lo, 1993; Irwin, 

Zulauf, and Jackson, 1996). 

MATERIALS AND METHODS 

In the introduction, we establish the concept of Zt, wherein Bt represents a standard Brownian 

motion and As denotes a continuous or piecewise continuous process. If ∫0tAs2ds is finite for every 

t, then Zt emerges as a square integrable martingale. However, if this condition is not satisfied, the 

stochastic integral may fail to exhibit martingale properties. 

Theorem 1: A continuous process Mt adapted to the filtration {Ft} is called a local martingale on 

[0, T) if there exists an increasing sequence of stopping times τ1 ≤ τ2 ≤ τ3 ≤ ... such that with 

probability one lim j→∞ τj = T and for each j, Mtj = Mt∧Tj is a martingale. 

For continuous martingales, the optional sampling theorem comes into play, asserting that under 

specific conditions, it's impossible to gain an advantage in a fair game. The subsequent theorem 

encompasses two versions particularly valuable for practical applications. 

Theorem 2: Suppose Zt is a continuous martingale and T is a stopping time, both with respect to 

the filtration {Ft}. If Mt = Zt∧T, then Mt is a continuous martingale with respect to {Ft}. In 

particular, E[Zt∧T ] = E[Z0] 

Theorem 3: Suppose there exists C < ∞ such that for all t, E[Zt
2

∧T ] ≤ C. Then if P{T < ∞} = 1,E[ZT] 

= E[Z0]. Suppose Zt is a continuous martingale and there exists C < ∞ such that E[|Zt|] ≤ C for all 

t. Then there exists a random variable Z∞ such that with probability one limt→∞ Zt = Z∞ 

Theorem 4: Suppose Zt is a continuous square integrable martingale, and let Nt = max0≤s≤t[Zt] 

Then for every a > 0  

Feynman-Kac Formula 

suppose the stock price evolves according to a geometric Brownian motion.  

dXt = mXtdt + σXtdBt)         (9) 
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Let's consider a scenario where at a future time T, we have the opportunity to purchase a share of 

the stock at a price S. We'll only exercise this option if the stock price at T is greater than or equal 

to S. Consequently, the value of the option at time T is represented by F(XT), where 

F(X)=(X−S)+=max(X−S,0). 

We introduce an inflation rate r, indicating that x dollars at time t in the future are equivalent to 

e−rtx in current dollars. Denoting ϕ(t,x) as the expected value of this option at time t, measured in 

dollars at time t, given that the current stock price is x. 

  

φ(t,x) = E[e−r(T−t)f(Xt)|Xt = x]          (10) 

The Feynman-Kac formula provides a partial differential equation (PDE) for this quantity. 

Generalizing further, we assume Xt satisfies the stochastic differential equation (SDE)                     

dXt=m(t,Xt)dt+σ(t,Xt)dBt, with initial condition X0=x0, and there exists a payoff F(XT) at some 

future time T. Additionally, we introduce an inflation rate r(t,x), where if Rt denotes the value at 

time t of R0 dollars at time 0, we have dRt=r(t,Xt)Rtdt and Rt=R0exp{∫0tr(s,Xs)ds}. 

If ϕ(t,x) represents the expected value of the payoff in time t dollars given Xt=x, then 

      (11) 

Theorem 5: (Feynmann-Kac formula). Suppose Xt satisfies dXt = m(t,Xt)dt + σ(t,Xt)dBt,X0 = x0 and 

r(t,Xt) ≥ 0 is a discounting rate. Suppose a payoff F at time T is given with E[|f(XT )|] < ∞. If φ(t,x), 

o ≤ t ≤ T is defined as in (3.3.3), and φ(t,x) is c0 in t and c2 in X then φ(t,x) satisfies the PDE 

,   (12) 

for 0 ≤ t < T, with terminal condition φ(T,x) = F(x) 

In Theorem (5), we rely on the assumption that ϕ exhibits adequate differentiability. Conditions 

on the coefficients and the payoff function F can be provided to ensure this requirement. 

Continuous Martingales 

Previously, we noted that Brownian motion stands as the sole continuous martingale. 

Theorem 6: Suppose that Mt is a continuous martingale with respect to a filtration {Ft} with M0 = 

0, and suppose that the quadratic variation of Mt is the same as that of standard Brownian motion, 
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     (13) 

Then every λ ∈ <, 

 sketch of proof. Fix λ and let f(x) = eiλx.  

Note the derivatives of f are uniformly bounded in x. Following the proof of Itˆ00s formula we can 

show that 

    (14) 

where Nt is a martingale. In particular, if r < t, 

.    (15) 

If we let G(t) = E[f(Mt)], we get the equation 

 

 

Black-Scholes Equation 

Consider the Black-Scholes equation for option pricing, focusing on a single stock with a price 

S(t) varying over time. Almagren (2002) suggests that the option's market value derived from this 

stock should be a function of S and t, denoted as V(t,S(t))=d(t). In finance, an asset's profitability 

is chiefly characterized by its rate of return. To model the fluctuations in the return on a stock, we 

employ a geometric Brownian motion. A process exhibits geometric (or exponential) Brownian 

motion if its logarithm follows a Brownian motion, indicating that random variations occur solely 

as fractional changes. This process is expressed by the differential equation dS=aS(t)dt+bS(t)dw(t), 

where a and b are constants, and w(t) is a Brownian motion. We leverage Ito's lemma to analyze 

this process 

.    (16) 

Let's consider an investor who possesses a combination of the stock and its corresponding option 

within their portfolio. 

 P(t) = N1(t)S(t)+N2(t)D(t). 
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The differential is 

    (17) 

Malliaris (1987) then presents the insightful idea of maintaining a ratio between stocks and 

derivatives, where 

  

Then we have: 

         (18) 

This asset is entirely unrelated to Brownian motion, as it lacks any dw(t) term, whether explicitly 

stated or implied. Consequently, it can be regarded as devoid of risk. According to the efficient 

market hypothesis, the return on this risk-free asset should mirror that of any other risk-free asset, 

such as a government bond. Let's denote the return on the government bond as r(t).Then we have 

        (19) 

If we rearrange and normalize so that N1 = 1, thus making N1 = Vs , we get 

        (20) 

or 

      (21) 

This equation represents the Black-Scholes model, which is fundamental for pricing options. Up 

to this juncture, we've delved into the requisite mathematical foundation crucial for 

comprehending the practical utilization of stochastic calculus within finance—the Black-Scholes 

option pricing model. 
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ANALYSIS AND DISCUSSION 

Black-Scholes option pricing model 

Under a set of significant assumptions, the Black-Scholes option pricing model can determine the 

non-arbitrage rational price of an option. 

Set-up of the Model 

If the price per unit of the underlying stock option follows a stochastic process represented by S = 

{St : t ≥ 0}. Additionally, let's assume that S adheres to the geometric Brownian motion stochastic 

differential equation (SDE): dSt = St(µdt + σdwt). The distinct solution to this geometric Brownian 

motion SDE is as follows: 

,  

Assuming normalization with S0 = 1, market participants are assumed capable of buying any 

quantity, including a negative quantity (equivalent to short selling) of the stock without transaction 

costs. Furthermore, they can purchase any quantity of a risk-free asset, or bond, which maintains 

a constant continuously compounded interest rate of r. Denoting the price of one unit of the bond 

at time t by Bt, B satisfies the integral equation dBt = rBtdt, leading to Bt = ert after normalization 

with B0 = 1. 

Negatively buying a bond corresponds to borrowing funds at an interest rate of r. We define a 

portfolio (at, Bt) as a pair of stochastic processes, both adapted to the filtration of σ-fields generated 

by Wt, where at and bt represent the number of units of stock and bond in the portfolio, 

respectively, at time t. The portfolio's value is determined by: 

Vt(a,b) = atst + btBt. 

The portfolio is self-financing if alterations in its value solely result from fluctuations in the stock 

and bond prices, without any external inflows or outflows of funds. The self-financing condition 

is expressed as: 

dVt(a,b) = atdst + btdBt 

To price an option, we rely on the no-arbitrage assumption, asserting the absence of risk-free profit 

opportunities. Our objective is to identify a self-financing portfolio that mimics the payout of the 

specific option under consideration—a portfolio tailored to the option type. Consequently, the 

option's value at time t equates to the value Vt(a,b) of the self-financing portfolio (a,b) replicating 

the option. 
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European Call option 

In this section, we determine the no-arbitrage rational price for a European call option utilizing the 

Black-Scholes model. The European call option grants the holder the right to purchase one unit of 

stock at a fixed strike price, K, at a predetermined maturity time, T. The holder can only exercise 

this option at time T and retains the discretion not to purchase the share. 

Consequently, the option's value at time T is represented by max{ST − K,0} = (ST − K,0)+. Since 

the European call option is exercisable solely at time T, a portfolio (a,b) with value function Vt(a,b) 

replicates the option if VT (a,b) = (ST − K,0)+ almost certainly. Assuming the existence of a self-

financing portfolio (a,b) replicating the European call option, we aim to determine the value 

function of (a,b) by hypothesizing the presence of a smooth deterministic function u:  <2 → <  

Vt = atSt + btSt = u(T − t,St) for t ∈ [0,T] 

 

Assumption of the model 

Stock price is approximated by geometric Brownian motion 

 

This assumption holds critical importance for several reasons. Firstly, it encompasses the weaker 

assumption that St follows an Itoˆ process, enabling us to leverage the Itoˆ integral and Itoˆ lemma 

to solve the stochastic differential equations derived from the model. Secondly, specifying St as a 

geometric Brownian motion entails assuming a constant mean rate of return μ and volatility σ from 

time t=0 to t=T, thereby defining the nature of the randomness embedded in the stock price. This 

assumption essentially suggests that the Wiener process provides a suitable approximation of the 

stochastic behavior observed in stock prices over time. 

However, it's important to acknowledge that while modeling the stock price process as a geometric 

Brownian motion is theoretically convenient, it does not reflect reality accurately. In practice, 

stock prices cannot take irrational values, thus necessitating that St belongs to the set of positive 

real numbers. This discrepancy with reality poses a challenge, as stock prices are bounded and 

finite, contrary to the assumption of unboundedness in geometric Brownian motion. 

Furthermore, the proof that the Black-Scholes portfolio replicates the European call option relies 

on the assumption that for continuous random variables P(X=x)=0 for all x in the real numbers. 

However, in reality, stock prices must be elements of the rational numbers, a countable subset of 

the real numbers. Consequently, the assertion that P(ST=K)=0 is no longer straightforwardly true 

when considering rational strike prices. 
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Deviation of a Discrete-Time Portfolio from the Self-Financing Property: Correction 

Suppose we break the interval [0,T] into n ∈ N intervals each of length and that financial market 

participants perform transactions only at time t  for j ∈ {0,1,...,n}. at this times t, financial 

market participants solve the Black-Scholes portfolio equations: 

at = φ(g(T − t, St)), and bt = −Ke−rt φ()h(T − t, S), and adjusting their holdings of stock and bond 

accordingly. Because the stock price St changes between  and  , in the 

absence of instantaneous re-balancing by financial market participants, the value of the portfolio 

they must acquire at time tj+1,Stj+1, atj+1+βtj+1btj+1, may differ from the value of the current 

portfolio they hold before executing rebalancing transactions at time tj, Stj+1atj+βtj+1btj. We can 

visualize this rebalancing transaction as the participant selling the portfolio held at time tj, (atj,btj

), at the prices at time tj+1, and subsequently purchasing the desired portfolio at time tj+1, (atj+1

,btj+1), at those same prices. The disparity between the proceeds gained from selling (atj,btj) and 

the funds needed to purchase (atj+1,btj+1) constitutes the correction over the time interval (tj,tj+1

], shaping our measure of the deviation of the portfolio from the self-financing property. 

The correction Cj of a portfolio over the time interval (tj,tj+1] is expressed as: 

Cj=Stj+1(atj+1−atj)+βtj+1(btj+1−btj). 

A positive Cj indicates that the participant must inject additional funds from an external source 

into the portfolio to execute the required transaction at time tj+1, while a negative Cj indicates that 

the participant must withdraw funds from the portfolio to execute the required transaction. 

The correction Ctk of a portfolio up to time tk is defined as follows: 

. 

It's important to highlight that Ctn represents the correction of a portfolio up to the option's 

maturity time, denoted as T. We symbolize Ctn as C. The subsequent sections delve into the 

examination of corrections for various Black-Scholes portfolios in depth. In each model, time 
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units, such as intervals of length I, are employed to denote a day.

 
Figure 1: Stock price and value of replicating portfolio for given sample path W0 of St 

Source: Greg W. (2012) 

 

Figure 2: Composition of replicating portfolio over time for sample path W0 of St 

Source: Greg W. (2012) 

Correction of sample paths of St 

The first model we built to study the correction of Black-Scholes portfolios simulates one sample 

path of the stock price process St, and tracks the correction of the portfolio over time. The model 

allows for the specification of K,T,µ, r,and n. It then calculate Stj,atj,btj, for j ∈ {0,1,...,n} and Ctj, 

for j ∈ {1,2,...n}. 
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The following is a sample output from the model with S0 = 1,B0 = 1,K = 1.1T = 250,n = 250, and 

annualized µ = 0.1,σ = 0.05 The sample path of St that generate this output is the stock price charted 

in figure 1.  

 

Figure 3: correction over time for same sample path W0 of St Source: Greg W. (2012) 

Figure 1, 2, and 3 depict the composition, value, and correction of the replicating Black-Scholes 

portfolio, respectively. Notably, in this particular sample path of St, ST, where < K, aT = bT = 0, 

the correction C is observed to be positive. This indicates that to replicate the European call option, 

financial market participants would have needed to inject additional funds into the portfolio from 

an external source. 

From the analysis presented, we can draw an observation concerning the correction and the 

construction of the replicating portfolio in discrete time steps: notable increases in stock price 

within a given time interval necessitate significant adjustments in the number of stock units held 

in the portfolio. Consequently, such instances are more likely to incur a positive correction over 

the interval. This phenomenon's sensitivity is influenced by factors such as the remaining time to 

maturity, the relative stock price compared to the strike price, and σ. 

This model not only enables us to scrutinize the correction across specific sample paths of St but 

also serves as a foundational framework for conducting numerical analyses of the correction across 

multiple sample paths which has solution. 
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Consequently, Ys embodies a standard Brownian motion. To delve deeper into understanding the 

behavior of the correction across multiple sample paths, we've devised a second model. This model 

aims to elucidate how the correction, denoted as C up to time T, behaves across various sample 

paths for differing values of n, the ratio measuring the frequency of portfolio rebalancing per day. 

Intuitively, we anticipate that as the frequency of rebalancing increases, C should converge toward 

0 more frequently. To bridge the discrete-time model with the continuous-time Black-Scholes 

model, particularly for large n, we aim to demonstrate that C tends toward 0 as n approaches 

infinity. Our model allows for the customization of parameters such as K, T, µ, σ, r, the sequence 

of n time steps under consideration, and the number of iterations performed for each n. Following 

50 iterations for each n ∈ {30, 600, 600, 900, 1200, 1500, 1800, 2100, 2400, 2700, 3000}, using 

the specified parameters: So = 1, β0 = 1, K = 1.02, T = 30, and annualized µ = 0.07, σ = 0.1, r = 

0.05, our findings indicate a discernible trend where C tends to approach 0 more closely as n 

increases. However, the rate of convergence diminishes for larger values of n, and it's crucial to 

note that this simulation lacks the rigor of a formal proof. 

Furthermore, our aspiration to analyze the correction's behavior for exceedingly large values of n 

encounters challenges, as computing limits necessitates a balance between the number of iterations 

feasible at each n and the range of n values amenable to analysis

 

Figure 5.1: correction over several sample paths and values of  
𝑇

𝑛
 

Source: Greg W. (2012) 
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Correction of portfolios based on historical stock price data 

To gain insights into how corrections manifest in the real-world implementation of a Black-

Scholes replicating portfolio, we've developed a third model. This model constructs a replicating 

portfolio and meticulously tracks its correction using a specified series of historical stock price 

data. Our methodology involves utilizing daily closing prices of stocks and setting the parameter 

n equal to T, enabling financial market participants to adjust their portfolios once per day. We 

simulate the creation of the Black-Scholes portfolio over a one-year period (T = 250), mirroring 

the approximate number of trading days in a year. The parameters employed for all examples 

remain consistent throughout this process. 

S0 = 1,β0 = 1,T = 250,K = 1.1, and annualized r = 0.05. 

Creating a Black-Scholes portfolio without relying on geometric Brownian motion, but rather on 

historical price data, presents a challenge. This is because the Black-Scholes portfolio's 

effectiveness hinges on the parameter σ, representing volatility within the price process. To apply 

the Black-Scholes formula at any given time t, we must make assumptions regarding σ for times s 

> t. We explore two distinct methods for determining an assumed volatility, both rooted in the 

historical volatility of the stock being analyzed. 

The first method, dubbed the constant volatility approach, entails calculating the historical 

volatility of the stock over the preceding six-month period (125 days) leading up to t=0. We then 

assume that σ maintains this constant value throughout the time span t ∈ [0,T]. 

In contrast, the second method, termed the rolling volatility approach, involves computing the 

rolling historical volatility of the stock for the six months (125 days) preceding each time point t. 

This rolling volatility value is then utilized in determining the Black-Scholes portfolio at time t. 

Historical volatility calculations (represented as v) adhere to established financial literature 

conventions and follow a standardized methodology described below. 

Given daily stock prices st,st+1,...st+n let  for i = 1, 2, .., n. Let 

 Then the daily volatility vdaily is given by 

 √  

and we annualised the volatility by multiplying by 250 , annual = σ = 250vdaily. 
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CONCLUSION 

We study the correction of different Black-Scholes portfolios using time units like intervals of 

length I. We build a model that simulates one sample path of the stock price process and tracks the 

correction of the portfolio over time. The model calculates the composition, value, and correction 

of the replicating Black-Scholes portfolio. The results show that large increases in stock price over 

a time interval require large increases in the number of stock units held in the portfolio and are 

more likely to necessitate a positive correction over the interval. This phenomenon is sensitive to 

the time remaining to maturity, the stock price relative to the strike price, and σ.  

The study focuses on numerical analysis of correction over several sample paths using a model to 

calculate the correction up to time T,C. A second model is created to better understand the 

behaviour of C for different values of n. The model allows for the specification K, T, µ,σ,r, the 

sequence of n, and the number of iterations for each number n of times steps. The output shows a 

clear trend to be more likely to be closed to 0 as increases. However, the rate at which C becomes 

more likely to be close to 0 is lower for large n. The study also aims to study the behavior of the 

correction for very large values of n, but computing limits necessitate a trade-off between the 

number of iterations and values of n. The third model creates a replicating portfolio and documents 

the correction of that portfolio for a given series of historical stock price data. 
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