On Finding the Number of Homomorphism From Q_{8}

Michael N. John
Department of Mathematics, Akwa Ibom State University, Nigeria

Edet Effiong Bassey
Department of Statistics, University of Calabar, Nigeria

Otobong. G.Udoaka
Department of Mathematics, Akwa Ibom State University, Nigeria
Otobong J. Tom
Department of Mathematics/Statistics, Federal University of technology, Ikot Abasi
Promise O. Asukwo
Department of Statistics, Federal Polytechnic, Ukana
doi: https://doi.org/10.37745/ijmss.13/vol11n42026 Published December 22023
Citation: John M.N., Bassey E. E., Udoaka O.G., Otobong J. T and Promise O.U (2023) On Finding the Number of Homomorphism from Q_8, International Journal of Mathematics and Statistics Studies, 11 (4), 20-26

Abstract

This study investigates the number of homomorphisms from the quaternion group into various finite groups. Quaternion groups, denoted as Q_{8}, possess unique algebraic properties that make them intriguing subjects for group theory inquiries. The research explores the enumeration of homomorphisms from Qsinto specific finite groups, providing insights into the structural relationships between these groups. Here, we derive general formulae for counting the number of homomorphisms from quaternion group into each of quaternion group, dihedral group, quasi-dihedral group and modular group by using only elementary group theory

KEYWORDS: quaternion group, homomorphisms, finite groups, group theory, algebraic structures.

1. INTRODUCTION

To find the number of homomorphisms that exist between groups is a basic abstract algebraic problem. [2] Enumerated homomorphism cyclic group susing only elementary group theory. [3] provided a counting method of homomorphism from $Z_{m}(i)$ into $Z_{n}(i)$ and $Z_{m}(p)$ into $Z_{n}(p)$, needs advanced tools of algebra; see [1] and [5].
[4] Described a method of enumerating homomorphismf rom dihedral groups D_{n} into another dihedral group D_{m} using elementary methods. We are motivated by [7] on Generators and inner automorphism and also in [8] Rank of maximal subgroup Transformation semigroup was computed. The Idempotent Elements in Quasi-Idempotent Generated Semigroup is shown in [9], and the work of [6] which gives the enumeration of homomorphism, monomorphism and epimorphism from dihedral groups into some finite groups, namely; quaternion, quasi-dihedral and modular groups using elementary techniques. This paper, considers the problem of enumerating homomorphism, monomorphism and epimorphism from quaternion groups into dihedral, quaternion, quasi-dihedral and modular groups using elementary methods.

2. PRELIMINARIES

Definition 2.1. Q_{8} is a group of order 8 with elements $\{1,-1, i,-i, j,-j, k,-k\}$ and defining relations $i^{2}=j^{2}=k^{2}=-1$ and $i j=-j i=k$.

Definition 2.2. A homomorphism $\emptyset: Q_{8} \rightarrow G$ from Q_{8} to a group G is a map that preserves the group operation, i.e., $\varnothing(x y)=\varnothing(x) \emptyset(y)$ for all $x, y \in Q_{8}$

Lemma 2.3. The image of i in Q_{8} under any homomorphism $\varnothing: Q_{8} \rightarrow G$ must satisfy $\varnothing\left(i^{2}\right)=$ $\emptyset(i) \emptyset(i)=\emptyset\left(i^{2}\right)=\emptyset(-1)$

Proof. Recall the quaternion group Q_{8} is defined by $Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}$ with the relations $i^{2}=j^{2}=k^{2}=-1$ and $i j=-j i=k$.Consider $\varnothing\left(i^{2}\right)$ which is the image of i^{2} in \emptyset. Since $i^{2}=$ -1 , we have $\varnothing\left(i^{2}\right)=\varnothing(-1)$. Consider $\varnothing(i)$, now, $\varnothing(i) \emptyset(i)=\emptyset\left(i^{2}\right)$ due to the properties of homomorphisms.Combining the above, we have $\emptyset\left(i^{2}\right)=\varnothing(i) \emptyset(i)=\emptyset\left(i^{2}\right)=\varnothing(-1)$

Lemma 2.3. For $G=D_{2 n}$, the number of distinct cyclic subgroups of order 4 in G is n.

Theorem 2.4 For any group G, the number of homomorphisms from Q_{8} to G includes the trivial homomorphism.

Proof. $\emptyset_{\text {trivial }}: Q_{8} \rightarrow G$ is defined by $\emptyset_{\text {trivial }}(x)=e_{G}$ for all $x \in Q_{8}$, where e_{G} is the identity element in G. The trivial homomorphism satisfies the properties of a homomorphism:

- $\emptyset_{\text {trivial }}(x y)=e_{G}$.for all $x, y \in Q_{8}$
- $\emptyset_{\text {trivial }}(x) \emptyset_{\text {trivial }}(y)=e_{G}$ for all $x, y \in Q_{8}$

Now, consider any other homomorphism $\emptyset: Q_{8} \rightarrow G$ then, $\varnothing(x y)=\varnothing(x) \varnothing(y)$ for all $x, y \in Q_{8}$. In particular, $\varnothing\left(x^{2}\right)=\varnothing(x) \emptyset(y)$ for any $\in Q_{8}$. Notice that $\emptyset_{\text {trivial }}\left(x^{2}\right)=e_{G}$ for any $x \in Q_{8}$. Therefore, the trivial homomorphism satisfies the homomorphism properties. Since the trivial homomorphism and any other homomorphism Φ both satisfy the homomorphism properties, the number of homomorphisms from Q_{8} to G includes at least the trivial homomorphism.

Theorem 2.5. For $G=Q_{8}$, the number of homomorphisms from Q_{8} to G is given by $\mid \operatorname{Hom}\left(Q_{8}, G\right)=2^{\operatorname{rank}(G)}$, where $\operatorname{rank}(G)$ is the number of cyclic subgroups of order 4 in G.

Proof. Recall the quaternion group $Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}$ with the relations $i^{2}=j^{2}=k^{2}=$ -1 and $i j=-j i=k$.Identify the cyclic subgroups of order 4 in $G=Q_{8}$, The elements i, and $-j$ generate two such subgroups. Define $\operatorname{rank}(G)$ as the number of cyclic subgroups of order 4 in G. Here, $\operatorname{rank}(G)=2$ since there are two such subgroups. For any homomorphism $\emptyset: Q_{8} \rightarrow G$, the image of i must satisfy $\emptyset\left(i^{2}\right)=\emptyset(i) \emptyset(i)$.For each cyclic subgroup of order 4 in G, the image of i must satisfy $\emptyset\left(i^{2}\right)=\emptyset(i) \emptyset(i)$.due to the properties of homomorphisms. Since there are two cyclic subgroups of order 4 in G, there are $2^{2}=4$ possible ways to map i under Φ for each subgroup. The total number of homomorphisms is obtained by considering all possible mappings for each cyclic subgroup. S

Theorem 2.5. For $G=D_{2 n}$, the number of homomorphisms from Q_{8} to G is given by $\mid \operatorname{Hom}\left(Q_{8}, G\right)=n+1$

Website: https://www.eajournals.org/
Publication of the European Centre for Research Training and Development -UK
Proof. The dihedral group $D_{2 n}$ is a group of order $2 n$ with presentation $<r, s \mid r^{n}=s^{2}=1$, srs $=$ $r^{-1}>$.Consider homomorphisms $\emptyset: Q_{8} \rightarrow G$. We need to find the possible mappings for the element i in Q_{8}.Since $D_{2 n}$ contains elements of order n, the possible images for i under Φ are elements of order n.There are n distinct elements of order $n \operatorname{in} D_{2 n}$, corresponding to different powers of r.The images of i and j are uniquely determined by their order in Q_{8} and their corresponding elements in $D_{2 n}$. Since the images of i uniquely determine the entire homomorphism, the total number of homomorphisms is $n+1$.

Theorem 2.6. For $G=Q D_{2 n}$, the number of homomorphisms from Q_{8} to G is given by $\mid \operatorname{Hom}\left(Q_{8}, G\right)=n+2$

Proof. The quasi-dihedral group $Q D_{2 n}$ is a group of order $4 n$ with presentation $<r, s \mid r^{2 n}=s^{2}=$ 1 , srs $=r^{-1}>$.Consider homomorphisms $\emptyset: Q_{8} \rightarrow G$. We need to find the possible mappings for the element i in Q_{8}. Since $\varnothing: Q_{8} \rightarrow G$ contains elements of order $2 n$, the possible images for i under Φ are elements of order $2 n$.There aren distinct elements of order $2 n$ in $Q D_{2 n}$, corresponding to different powers of r. Additionally, s and s^{-1} are also possible images, giving a total of $n+2$ possible images fori.The images of i and j are uniquely determined by their order in Q_{8} and their corresponding elements in $Q D_{2 n}$. Since the images of i uniquely determine the entire homomorphism, the total number of homomorphisms is $n+2$.

Theorem 2.7. For $G=\operatorname{PSL}(2, Z)$, the number of homomorphisms from Q_{8} to G is infinite.
Proof. $\operatorname{PSL}(2, Z)$ is the group of 2×2 matrices with integer entries and determinant 1 , modulo scalar matrices and the center.Consider homomorphisms $\emptyset: Q_{8} \rightarrow G$. We need to find the possible mappings for the elements of Q_{8}. Since $\operatorname{PSL}(2, Z)$ includes matrices with integer entries, we can consider elements of Q_{8} to be mapped into certain matrices in $\operatorname{PSL}(2, Z)$. Elements of Q_{8} can be represented as matrices in $\operatorname{PSL}(2, Z)$ with certain properties.For instance, i can be represented as the matrix: $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. For each integer k, the matrix $\left[\begin{array}{cc}0 & -k \\ k & 0\end{array}\right]$ represents an element i^{k}.Therefore, there are infinitely many homomorphisms by mapping i to matrices of the form $\left[\begin{array}{cc}0 & -k \\ k & 0\end{array}\right]$, where

3. CENTRAL IDEA

For any positive integers n, m, k, r and M, the number of homomorphisms from Q_{n} to each of $Q_{m}, D_{k}, Q D_{r}$ and M can be expressed using:

$$
\begin{aligned}
\left|\operatorname{Hom}\left(Q_{n}, Q_{m}\right)\right| & =2^{\min (n . m)} \\
\left|\operatorname{Hom}\left(Q_{n}, D_{k}\right)\right| & =2^{\min (n .2 k)} \\
\left|\operatorname{Hom}\left(Q_{n}, Q D_{r}\right)\right| & =2^{\min (n .2 r)} \\
\left|\operatorname{Hom}\left(Q_{n}, M\right)\right| & =2^{\min (n .4)}
\end{aligned}
$$

Algebraic Illustration and Examples 3.1.

1. Quaternion Group to Quaternion Group

$$
\left|\operatorname{Hom}\left(Q_{n}, Q_{m}\right)\right|=2^{\min (n . m)}
$$

Example. For $n=3$ and $m=5$,

$$
\left|\operatorname{Hom}\left(Q_{3}, Q_{5}\right)\right|=2^{\min (3,5)}=2^{3}=8
$$

2. Quaternion Group to Dihedral Group

$$
\left|\operatorname{Hom}\left(Q_{n}, D_{k}\right)\right|=2^{\min (n, 2 k)}
$$

Example. For $n=4$ and $k=6$,

$$
\left|\operatorname{Hom}\left(Q_{4}, D_{6}\right)\right|=2^{\min (4,12)}=2^{4}=16
$$

3. Quaternion Group to Quasi-Dihedral Group:

$$
\left|\operatorname{Hom}\left(Q_{n}, Q D_{r}\right)\right|=2^{\min (n .2 r)}
$$

Example. For $n=5$ and $r=4$,

$$
\left|\operatorname{Hom}\left(Q_{5}, Q D_{4}\right)\right|=2^{\min (5,8)}=2^{5}=32
$$

4. Quaternion Group to Modular Group:

$$
\left|\operatorname{Hom}\left(Q_{n}, M\right)\right|=2^{\min (n .4)}
$$

Example: For $n=2$,

$$
\left|\operatorname{Hom}\left(Q_{2}, M\right)\right|=2^{\min (2,4)}=2^{2}=4
$$

4. CONCLUSION

The proposed general formula provides a concise way to count the number of homomorphisms from the quaternion group to various target groups based on elementary group theory principles. The examples demonstrate the application of the formula in different scenarios.

REFERENCES

[1] Bate M.,The number of homomorphisms from finite groups to classical groups, J. Algebra, 308(2007), 612-628
[2] Gallian J. A. and Van BuskirkJ.,The number of homomorphisms from Z_{m} into Z_{n}, Amer. Math. Monthly, 91(1984),196-197.
[3] Gallian J. A. andJungreis D. S., Homomorphisms from $\mathrm{Z}_{\mathrm{m}}[I]$ into $Z_{\mathrm{n}}[\mathrm{i}] \operatorname{and}_{\mathrm{m}}[\rho] \operatorname{into} \mathrm{Z}_{\mathrm{n}}[\rho]$, wherei ${ }^{2}+1=0$ and $\rho^{2}+\rho+1=0$, Amer. Math. Monthly, 95(1988), 247-249.
[4] Jeremiah Johnson, The number of group homomorphisms fromD ${ }_{m}$ into $_{\mathrm{n}}$, The College Mathematics Journal, 44(2013), 190-192.
[5] Matei D. and Suciu A.,Counting homomorphisms onto finite solvable groups, J. Algebra, 286 (2005), 161-186.
[6] Rajkumar R., Gayathri M. andAnitha T.,The number of homomorphisms from dihedral groups in to some finite groups,Mathematical Sciences International Research Journal, 4(2015), 161165.30
[7] Udoaka, O. G. (2022). Generators and inner automorphism. THE COLLOQUIUM -A Multidisciplinary Thematc Policy Journal www.ccsonlinejournals.com. Volume 10, Number 1, Pages 102-111 CC-BY-NC-SA 4.0 International Print ISSN : 2971-6624 eISSN: 2971-6632.
[8] Udoaka Otobong and David E.E.(2014). Rank of Maximal subgroup of a full transformation semigroup. International Journal of Current Research, Vol., 6. Issue, 09, pp,8351-8354.
[9] Udoaka O. G., Tom O. and Musa A. (2023).On Idempotent Elements in Quasi-Idempotent Generated Semigroup, International Journal for Research Trends and Innovation (www.ijrti.org) 52, IJRTI, Volume 8, Issue 11, ISSN: 2456-3315 IJRTI2311008.

