Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Optimal Scaling Categorical Principal Components Analysis: Road Traffic KSI Car Accidents in England (STATS19)

Mohammad M R Sheikh

(Statistical Researcher, School of Mathematics and Computing, Kingston University London; Phone: +4407723382812, email: m.sheikh@kingston.ac.uk)

Citation: Sheikh MMR (2023) Optimal Scaling Categorical Principal Components Analysis: Road Traffic KSI Car Accidents in England (STATS19), *International Journal of Mathematics and Statistics Studies*, 11 (3), 27-46

ABSTRACT: Categorical principal component analysis (CATPCA) technique was applied in the road killed or seriously injured (KSI) car accidents in England based on STATS19 data so that the categorical variables of KSI car accidents can be transferred into few components with reduction of dimensionality. Finally selected 20 variables in KSI car accident database were divided to create four principal components by applying "optimal scaling CATPCA" procedure in SPSS. The statistically significant KSI car accident variables, particularly the most accountable categorical variables, were identified and quantified for developing models as well as leading to aims to reduce as well as to prevent the car accidents, particularly the KSI car accidents. It also leads to map out the possible safety improvement strategies as well as to inform the policymakers on how best to reduce the number and severity of car crashes.

KEYWORDS: KSI, CATPCA, optimal scaling, dimensionality, principal components, quantification

INTRODUCTION

This research is to model road traffic KSI car accidents in England based on STATS19 database by applying 'categorical principal component analysis (CATPCA)' method, so that the variables in KSI car accidents can be transferred into few components with reduction of dimensionality. CATPCA performs principal components analysis on a set of variables that can be given mixed optimal scaling levels, and the relationships among observed variables are not assumed to be linear. This technique quantifies categorical variables alongside while reducing the dimensionality of the data. The goal of CATPCA is to reduce an original set of categorical variables into a smaller set of uncorrelated components representing most of the information observed in the original variables. The technique is most useful when many categorical variables forbid effective interpretation of the relationships between objects (i.e., subjects and units), and a few components rather than many variables are interpreted by reducing the dimensionality. The optimal-scaling approach allows categorical variables to be scaled at different levels so that categorical variables are optimally quantified in the specified dimensionality, and nonlinear relationships between categorical variables can be modelled.

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

The aims/ objectives of the research study are as follows:

- a) To reduce the dimensionality of categorical variables in killed or seriously injured (KSI) car accidents.
- b) To quantify the most accountable categorical variables involved in KSI car accidents.
- c) To develop models by applying categorical principal component analysis method.
- d) To inform policymakers on how best to reduce the number and severity of car crashes.

The key research questions area as follows:

- A) What are the most significant variables in road KSI car accidents?
- B) How can these KSI car accidents be reduced?

The structure of the study is detailed as **Section 2** is research methods including data source, CATPCA method, defining scale and weight of variables, discretisation, missing vale option, output/ loading plots etc. **Section 3** is a brief of KSI car accident database construction and data manipulation extracted from STATS19 database. **Section 4** is CATPCA application in KSI car accidents, including design, variable selection, iteration, quantification, variance accounted for (VAF), rotated variance accounted for (RVAF), correlation matrix of original variables as well as transformed variables, and component loadings as well as rotated component loadings. **Section 5** is study findings, discussions, and conclusion.

2. RESEARCH METHODS

2.0. Data Source

The study is to use the secondary data from DfT-STATS19 database developed by UK Police and Department of Transport, UK. The DfT has undertaken work to link data from STATS19. Data for KSI car accidents in England are to be extracted from the DfT-STATS19 database. This secondary data covers the period from 1979 through 2015.

2.1. CATPCA Method

The CATPCA simultaneously not only quantifies categorical variables, but also decreases the dimensionality of the data. It is to bring down an original set of variables into a smaller set of uncorrelated components, representing most of the information found in the original variables. The technique is most useful in STATS19 data as many variables exclude effective interpretation of the relationships between subjects and units. The optimal-scaling approach allows variables to be scaled at different levels so that categorical variables are optimally quantified in the specified dimensionality as well as nonlinear relationships between variables can be modelled.

In CATPCA data considerations, string variable values are always converted into positive integers by ascending alphanumeric order, where user-defined missing values or systemmissing values or any values less than 1 are considered missing. The data contain at least three valid cases mandatorily and it must be positive integer. The discretization option is to automatically categorise a fractional-valued variable by grouping its values into categories with a close to "normal" distribution and it is to automatically convert values of string variables into positive integers.

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

2.2. Defining Scale and Weight of Variables in CATPCA

Optimal scaling level is set for analysis variables and supplementary variables, as well as the weight for analysis variables can be set specifying a positive integer. The scaling level to be used to quantify each variable can also be selected so that a) the order of the categories of the observed ordinal variable is preserved in the optimally scaled variable; b) the order of the categories and the equal distances between category numbers of the observed discrete variable are preserved in the optimally scaled variable.

2.3. Discretisation in CATPCA

The variables are to be discretised by applying 'grouping method', where a specified number of categories is recoded for categorical variables as well as discrete variables are recoded into categories defined by equally sized intervals.

2.4. Missing Values in CATPCA

Missing values with the quantification of an extra category can be replaced so that objects with a missing value on the variable are considered to belong to the same (extra) category.

2.5. Options in CATPCA

The Options provide the controls to select the initial configuration, specify iteration and convergence criteria, as well as to select a normalisation method, to choose the method for labelling plots, and to specify supplementary objects. The case number of the object, or the first and last case numbers of a range of objects to make supplementary, is specified if it is needed. If an object is specified as supplementary, then case weights are ignored for that object. One of ¹five options (i.e., Variable Principal, Object Principal, Symmetrical, Independent and Custom) for normalising the object scores and the variables, is specified. It is noted that only one normalisation method can be used in each analysis.

The maximum number of iterations can be specified so that the procedure can go through in its computations. A convergence criterion value can also be selected. The algorithm stops iterating when the difference in total fit between the last two iterations is less than the convergence value or if the maximum number of iterations is reached. Variables and value labels or variable names

¹ Normalising Methods:

a) **Variable Principal** option is applied to optimise the association between variables so that the coordinates of the variables in the object space are the component loadings (correlations with principal components, such as dimensions and object scores).

b) **Object Principal** option is applied to optimise the distances between objects.

c) Symmetrical option is used for the relationship between objects and variables.

d) **Independent** option is used to examine distances between objects and correlations between variables separately.

e) **Custom** option specifies any real value in the closed interval [-1, 1] where value of '1' is for the Object Principal option; '0' is for the Symmetrical option; '-1' is for the Variable Principal option. Any value greater than '-1' or less than '1' is specified so that the eigenvalue over both objects and variables are spreaded.

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

and values can be specified to be used in the plots. All dimensions in the solution are displayed in a scatterplot matrix. One of ²five options for rotation method (i.e., Varimax, Quartimax, Equamax, Oblimin and Promax) to obtain rotated results, can be selected.

2.6. Output and Loading Plots in CATPCA

- 1) Displays the component loadings for all variables that were not given multiple nominal scaling levels. The component loadings by size can be sorted. The component loadings can be displayed in Scatter Matrix.
- 2) Shows for each iteration, the variance accounted for, loss, and increase in variance accounted for (VAF).
- 3) Shows the correlation matrix of the original variables and the eigenvalues of that matrix.
- 4) Shows the correlation matrix of the transformed (optimally scaled) variables and the eigenvalues of that matrix.
- 5) Displays the amount of variance accounted for (VAF) by centroid coordinates, vector coordinates, and total (centroid and vector coordinates combined) per variable and per dimension. The VAF can be shown in Bar Charts.
- 6) Gives the category quantifications and coordinates for each dimension of the variables that are selected.

3. Road KSI Car Accident Data Manipulation and Database Construction

The reported/ recorded data of road traffic KSI car accidents extracted from the datasets of DfT-STATS19 under Department for Transport for the period of 1979-2015, had been used for database construction and then, the data in the databases were manipulated individually using 'data function' and 'transform function' of SPSS 26.0.1 version and onwards following research methodology as briefed in the previous section (i.e., Section 2).

Two accident databases based on DfT-STATS19 database, were constructed containing the existing variables and the new variables computed from existing variable(s) following the database design such as determining the purpose of the database, findings, and organising the information required, dividing the information items into tables, turning information items into

² Rotated Methods:

f) **Varimax** orthogonal rotation method is to minimise the number of variables to have high loadings on each component.

g) **Quartimax** rotation method is to minimise the number of components that are needed to explain each variable.

h) **Equamax** rotation method is a combination of the Varimax method, and the Quartimax method so that the number of variables loading highly on a component and the number of components needing to explain a variable, are minimised.

i) **Oblimin** is a method for oblique (non-orthogonal) rotation. The value of Delta must be less than or equal to 0.8.

j) **Promax** is an oblique (non-orthogonal) rotation, to allow the components to be correlated. The amount of correlation (obliqueness) that is allowed is controlled by the kappa parameter. The value of **Kappa** must be greater than or equal to 1 and less 10,000.

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: <u>https://www.eajournals.org/</u>

Publication of the European Centre for Research Training and Development -UK

columns, specifying the primary keys, applying the normalisation rules, refining the design and setting up the table relationship.

Total 49 variables, containing 10 discrete variables as well as 13 dichotomous, 14 nominal and 12 ordinals, were included in road KSI car accident database shown in Table 3.

Table 3.	Valid/ Missing	KSI cases	in Road	Car Acciden	t Data	based in	n Accident	Index	in
			En	oland					

	Valid and Missing KSI Cases in	Road Traffic	Car Accider	vt Database bas	sed on Accidem	Index in England		
	Variable/ Factor	Type	Valid Case	Valid Case %	Missing Case	Missing Case %	Other Case	Other Case %
1 Accident	Year	Continuous	1089560	100.00	0	£0.00	0	0.00
2 First Roa	ad Number	Continuous	815907	74.90	273653	£25.10	0	0.00
3 Latitude		Continuous	332388	30.51	757172	£69.49	0	0.00
4 Longitud	erre come contra com	Continuous	332388	30.51	757172	669.49	0	0.00
5 Number	of Casualty per KSI Accident	Continuous	1089560	0.00	0	£0.00	0	0.00
6 Number	of Vehicle per KSI Accident	Continuous	1089560	0.00	0	£0.00	0	0.00
7 OSGR E	asting	Continuous	1086224	99.69	3336	£0.31	0	0.00
8 OSGR N	lorthing	Continuous	1087795	99.84	1764	£0.16	0	0.00
9 Second I	Road Number	Continuous	1069885	98.19	19675	£1.81	0	0.00
10 Speed Li	mt	Continuous	1089560	100.00	0	£0.00	74	0.00
11 Built-non	-Built-up Speed Area	Dichotomous	1089557	100.00	3	£0.00	0	0.00
12 Carriage	way Hazards-non-Hazards	Dichotomous	1082347	99.30	7213	£0.70	0	0.00
13 First Cla	ssified-non-Classified Road Class	Dichotomous	1089560	100.00	0	£0.00	0	0.00
14 First Cla	ssified Trunk-non-Trunk Road Class	Dichotomous	797819	73.20	291741	£26.80	0	0.00
15 First Nur	nbered-non-Numbered Road	Dichotomous	1089505	100.00	55	£0.00	0	0.00
16 Junction	Control-non-Control	Dichotomous	607766	55 80	481794	£44 20	0	0.00
17 Junction	-non-Junction Details	Dichotomous	1089471	100.00	89	£0 00	0	0.00
18 Pedestra	an Crossing at Human Control	Dichotomous	3450	0.30	100	£0.00	0	0.00
19 Pedestra	an Crossing at Human Control-non-Control	Dichotomous	1069982	98.20	100	£0.00	0	0.00
20 Pedestri	an Crossing at Physical-non-Physical Facilities	Dichotomous	1069890	98.20	19670	£1.90	0	0.00
21 Police O	fficer's Attandance-non-Attendance at Accident Sc	Dichotomous	321525	29.50	769035	£70.50	0	0.00
22 Road En	wronment Urban-non-Urban	Dichotomous	479962	44.00	609698	£56.00	0	0.00
23 Special (Conditions non-Conditions at Site	Dichotomous	1067904	98.00	21656	\$2.00	0	0.00
24 Carriane	way Hazards (5-I evel)	Nominal	18983	1.70	7213	E0 70	1063364	97.60
25 First Cla	ssified Road Class (5-) even	Nomial	797819	73.20	100	50.00	291741	26.80
26 England	Region (9-1 evel)	Nomial	1089560	100.00	100	\$0.00	0	0.00
27 Junction	Control (4.1 evel)	Nomial	596831	54.80	481794	£44.20	10936	1.00
28 Junction	Detais (R.Level)	Nomial	597571	54.90	89	\$0.00	491900	45.10
29 Linhts C	antitions (5.1 evel)	Nomial	1089413	100.00	147	F0.00	0	0.00
30 Pedectro	an Crossion at Physical Earlities (5.) evel)	Nomial	134018	12.30	19870	£1.90	935974	85.90
31 Police O	ficer's Mandance at Accident Scene (3.1 evel)	Nominal	321525	29.50	789035	£70.50	0	0.00
32 Read En	wronment (3.) evel)	Nomial	479962	44.00	809898	£58.00	0	0.00
33 Road St	dace Conditions (7.1 mail)	Mornial	1089290	00.00	1270	50.10	0	0.00
34 Road Tu	na (5.1 aval)	Nomial	1070965	98.30	18505	£1.70	0	0.00
35 Second I	Road Class (5.1 avail)	Nomial	578347	53.10	511213	E46 90	0	0.00
36 Special (Conditions at Site (7.1 evel)	Nomial	19601	1.90	21056	£2.00	1048213	96.20
37 Weather	Conditions (8.1 evel)	Nomial	1089460	100.00	100	50.00	0	0.00
29 Accident	Day (7.1 min)	Ordenal	1000560	100.00	100	60.00	0	0.00
29 Accident	Month (12.1 mml)	Ordinal	1009560	100.00	100	00 00	0	0.00
40 Accident	Time (12.1 and)	Ordinal	1009472	100.00	89	50.00	0	0.00
41 Car per l	KSI Accident (2.1 minl)	Owlead	1000560	500.00	100	50.00	0	0.00
47 Cacualty	ner KSI Car Areidart ("Li mall	Ordeal	1080500	100.00	100	50.00	0	0.00
43 First Nur	whered Road Cint (S.) evel	Ordinal	815007	74.90	100	50.00	273508	25.10
44 First Abu	nhered Road Zone (4.1 puel)	Ordinal	703467	72.80	22406	52.10	273568	-25 10
d5 Loth de	Band (61 each)	Ordinal	332284	30.60	757470	CC0 ER	210000	0.00
46 Longitud	e Band (5.1 evel)	Ordenai	332300	30.50	767479	600.00	0	0.00
47 OSCP C	action Band (5.) evel	Ordinal	1096224	90.70	2228	20 20	0	0.00
49 0900 N	lothing Dand (7 Laugh	Ordenal	1000224	00.00	4704	£0.30 60.30	0	0.00
40 USGR N	and (7-cevel)	Ordeni	1007/90	100.00	1/04	20.20	0	0.00

4. CATPCA in KSI Car Accidents

By following El-Basyouny and Sayed (2009), Harrel (2015), Kleinbaum and Klein (2010), Saukani and Ismail (2019), and Hung and Tai-Jin. (2018), categorical principal component analysis (CATPCA) method was applied in KSI car accidents.

4.0. CATPCA Design

The CATPCA based on "optimal scaling level for one set of variables that some factor(s) are not niminal" was run on a 20-factor/ factor dataset that measured desired 'road traffic KSI car

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

accident' characteristics on 1089560 cases/ observations. The suitability of CATPCA was assessed prior to analysis. Inspection of the correlation matrix showed that all variables had at least one correlation coefficient greater than 0.3. Grouping method and normal distribution were used for discretisation. The methods such as 'factor principal' and 'Varimax for rotation with Kaiser nomalisation' were applied. Each factor was defined/ scaled as '1' for its weight that was analysed through optimal scaling level. Preliminary assumption checking revealed: variables were measured in ordinal/ nominal/ dichotomous formats; there were linear relationships between all variables, as assessed by scatterplots; the data had sampling adequacy (large sample size, n = 1089560); the dataset were suitable for data reduction; there should be no significant outlier(s), as assessed by boxplot.

4.1. Variables in CATPCA of Car Accidents

1089560 cases of 20 variables were used in analysis, where the common cases that were valid were 579496.

- a) Only one discrete variable such as 'accident year' was used.
- b) Seven dichotomous variables such as 'built-non-built up speed area', 'carriageway hazards-non hazards', 'junction-non-junction details', 'junction control-non-control', 'pedestrian crossing at human control-non-control', 'pedestrian crossing at physical-non-physical facilities', and 'special conditions-non-conditions', were used.
- c) Four nominal variables such as 'England region', 'lighting conditions', 'road type', and 'weather conditions', were used.
- d) Eight ordinal variables such as 'OSGR easting band', 'OSGR northing band', 'speed limit zone', 'casualty per accident', 'car per accident', 'accident time', 'accident day', and 'accident month', are used.

4.2. Iterations in CATPCA of Car Accidents

The process stopped at the 34th iteration because the convergence test value was reached. The iteration history has been displayed in Table 4.2. The 0th iteration displays the solutions of the statistics with all variables. It displays the eigenvalues for each iteration of the analysis. These are used to determine the percentage of variance accounted for (a type of effect size) and therefore, larger eigenvalues are preferred over smaller ones to get a better solution (higher eigenvalue).

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Iteration Number	Variance Ac	counted For	111111111111		Loss
	Total	Increase	Total	Centrold Coordinates	Restriction of Centroid to Vector Coordinates
0	6.33255	0.00151	73.667	72.134	1.5329
1	7.09878	0.76623	72.901	72.134	0.7667
2	7.37783	0.27905	72.622	71.793	0.8291
3	7.47787	0.10004	72.522	71.718	0.8044
4	7.53631	0.05844	72.464	71.683	0.7810
5	7.57372	0.03741	72.426	71.662	0.7635
6	7.60111	0.02739	72.399	71.646	0.7524
7	7.62449	0.02338	72.376	71.629	0.7461
8	7.64729	0.02280	72.353	71.608	0.7446
9	7.67190	0.02460	72.328	71.581	0.7476
10	7.70020	0.02830	72.300	71.545	0.7546
11	7.73325	0.03306	72.267	71.502	0.7650
12	7.77106	0.03781	72.229	71.452	0.7774
13	7.81209	0.04103	72.188	71.398	0.7900
14	7.85318	0.04109	72.147	71.345	0.8013
15	7.89036	0.03718	72.110	71,299	0.8108
16	7.92060	0.03024	72.079	71.261	0.8185
17	7.94300	0.02240	72.057	71.232	0.8245
18	7.95850	0.01550	72.042	71.212	0.8293
19	7.96873	0.01023	72.031	71.198	0.8329
20	7.97518	0.00646	72.025	71.189	0.8358
21	7.97916	0.00398	72.021	71.183	0.8381
22	7.98161	0.00245	72.018	71,179	0.8399
23	7.98313	0.00152	72.017	71.176	0.8413
24	7.98408	0.00095	72.016	71.174	0.8424
25	7.98467	0.00060	72.015	71.172	0.8432
26	7.98506	0.00038	72.015	71.171	0.8439
27	7.98530	0.00024	72.015	71.170	0.8444
28	7.98546	0.00016	72.015	71.170	0.8449
29	7.98556	0.00010	72.014	71.169	0.8452
30	7.985624	0.000067	72.014	71.169	0.8455
31	7.98567	0.000044	72.014	71.169	0.8457
32	7.98570	0.000028	72.014	71.168	0.8458
33	7.98571	0.000014	72.014	71.168	0.8455
34	7.98572	0.000008	72.014	71.168	0.8459
Iteration 0 displays	the statistics	of the solution w	th all vari	ables, except variables v as numerical.	vith optimal scaling level Multiple Nominal, treated

4.3. Quantification of Variables in CATPCA of Car Accidents

The quantification for dichotomous variables followed by nominal and ordinal variables, is detailed and displayed in Table 4.3 that display the frequency, the quantification value assigned, the centroid coordinates, and the vector coordinates of each response category for each item.

Table 4.3. Quantification in CATPCA of KSI Car Accidents in England

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Variable	Variable	Category	Frequency	Quantification	Ce	ntroid C Dime	oordina naion	nteo	Ve	Dime	ordinab naion	*5
.9104		and Pulling Record Anno	accasa		1 444	2	3	4	1 1000	2	3	4
	Buit-non-Sull up Speed Area	Bull up Speed Area	735954	0.686	0.597	0.052	0.109	0.098	0.595	0.026	0.127	0.068
	Carriageway Hazards	No Hazards	1063364	0.025	0.002	0.008	0.001	0.016	<0.001	0.001	8.003	-0.001
	non-Hazarda	Hazards- Missing	18963	7.574	-0.136	-0.359	-0.924	0.040	-0.137	10.300	-0.924	0.035
	Junction Control-non-	Not at Junction or Within 20 Metres	10930	-3.530	-0.622	0.436	-1.993	-0.661	0.703	0.032	1.971	-0.200
5	Control	As Junction or Within 20 Mades Missing	481794	3.294	0.201	0.009	0.704	0.054	0.252	-0.011	0.00	0.075
8	Junction non Junction	Not al Junction or within 20 Metres	491900	-1 126	0.331	-0.009	-0.900	-0.031	-0.331	-0.010	-8.850	-0.045
chat	Details	Missing	50/5/1	0.003	0.200	4010	0.704	0.00+	0.760	0.000	0.106	11.0.5
	Pedestriat Crossing at Haman Costrol.nos.	Not at Crossing or within 50 Metres	1005432	1011	0.011	800 D.	0.017	-0.089	0.011	0.008	0.0017	0.02
	Control	Missing	19678									
	at Physical-non-	At Physical Crossing Facilities or within 50 Methes At Physical Crossing Facilities or within 50 Methes	134016	2,666	1.077	0.279	0.191	-0.073	1.081	0.287	0.208	-0.10
	Physical Facilities	Missing No. Contribute	1045213	0.088	0.005	0.009	0.015	.0.007	0.014	8.010	.8.017	.0.00
	Special Conditions non-Conditions at Site	Special Conditions	19091	1.891	-0.287	-0.053	-0.063	-0.135	0.028	-0.019	-0.032	-0.58
		North-East Region	21656	.1.452	0.142	-1,400	.0.009	-0.154	-0.152	.1.355	0.053	.0.15
		North-West Region Vortestary & the Hamber Breaks	101051	-0.000	0.203	-0.078	-0.032	-0.010	-0.006	-0.056	-0.002	-0.000
		East Midlands Region	99862	-1,369	0.186	-1277	-0.027	-0.097	0.142	-1.271	0.050	-8.17
	England Region	West Midlands Region Eastern Rection	117766	0.829	0.044	-0.813	-0.052	0.072	0.087	-0.775 0.085	-8.630	-8.20
		Landon Regran	170391	1.664	0.563	1.478	0.120	0.460	0.174	1.556	0.061	0.21
		South-East Region	178554	0.548	-0.310	0.585	-0.005	-0.079	0.057	0.513	0.020	0.00
		Darkness with Lights Lit	278734	-0.819	0.555	0.007	0.001	0.137	0.432	-0.005	0.240	0.64
	Lighting Conditions	Darkness without Lighting	100015	2:997	1.490	0.030	-1.043	-0.100	-1.579	0.022	0.880	-0.17
-		Definess with Lighting Unknown. Deviate	8761 695378	0.067	0.085	-0.098	0.299	0.202	0.030	+0:001	0.021	-8.00
10		Missing	147									
2		Roundatiout Dual Carriageway	140963	-0.246	0.180	0.046	0.713	-0.184	-0.006	-0.014	0.009	-0.210
	Road Type	One Way Street Slip Road	4333	1311	0.542	0.115	0119	1 105	0.030	0.075	0.057	1.95
		Single Carriageway	880090	-0.068	0.029	-0.026	-0.014	-0.009	-0.002	-0.004	0.003	-0.05
		Missing Baining without Hinth Wants	18595	0.143	0.035	0.021	0.015	0.112	0.005	0.006	0.010	0.54
		Browing without High Winds	5808	0.414	-0.237	-0.237	-0.285	0.317	0.013	0.017	-0.028	0.33
		Fine with High Winds Baining with High Winds	15156	-0.064	0.160	-0.177	-0.118	-0.051	0.002	-0.002	0.004	-0.04
	Weather Conditions	Showing with high Winds	1629	0.209	-0.560	-0.378	0.380	0.135	0.007	0.009	0.014	0.16
		Other Unknown WC	45003	4,735	0.034	0.200	-0.330	3809	-0.153	0.003	-0.005	3.80
		Fine without High Winds Mission	853096	-0.252	0.021	-0.004	0.006	-0.203	0.008	-0.011	0.017	-0.203
		CSE 0-300 km	44900	-0.812	0.185	0.425	-0.163	1.367	0.031	0.561	-8.002	0.05
		OSE 300-400 km OSE 500-600 km	246730 345640	-0.812	0.002	0.927	0.052	0.103	0.031	0.561	-8 002	0.051
	GSGH Easting Band	C65E 800-700 km	30062	-0.198	0.283	0 153	-0.011	0.010	0.008	0.137	=0.001	0.012
		Missing	3336	1,670	11.040	0.000	didu's	9.000	0.049	4.00.5	0.004	0.00
		OSN 0.100 km OSN 200.300 km	53020	-0.737	0.118	0.018	-0.051	0.282	-0.041	-0.607	-0.028	0.096
		CSN 300-400 km	203295	-0.737	0.000	-0.679	-0.019	0.002	0.041	0.607	-0.028	0.096
	OSGR Nothing Band	CEN 400-500 km	1582/4	-0.737	0.120	-0.738	-0.016	0.156	0.041	-0.607	-0.028	0.098
		CGN 000+ km	13645	-0.737	0.055	0.056	-0.158	3 598	-0-041	-0.607	-0.020	0.096
		Messing	1754	1,401			0.001		a arr	1.161	0.021	
		20 mph (32 km/h) Zone 40 mph (64 km/h) Zone	3029	-1 193	0.114	840.0.	0.185	-0.367	-1:009	-0.062	-0.182 -0.182	.0.130
	Council Limit Trees	50 mph (90 km/h) Zone	19878	-1.193	-1.079	0.212	-0.087	-0.289	-1.009	-0.062	-0.182	-0.130
	Speed Child Zone	70 mph (112 km/h) Zone	78668	-1.193	1.218	-0.050	-0.406	-0.137	-1.009	-0.062	-0.162	-0.13
		30 mph (48 km/li) Zonk Missimi	636228	0.835	0.767	8.045	0.188	0.112	0.706	0.043	0.127	0.09
	Casualty per KSI Car	Single Crowsby	729623	-0.682	0.308	0.005	0.123	0.011	0.374	0.005	0.100	-0.00
	Accident	Double Casualties Multiple Casualties	204861 154876	1.045	1.022	0.010	0.153	0.025	-1.012	0.009	0.154	0.00
	Car per 651 Accedent	Single Car Double Car	415843	-1.287	0.523	0.054	-0.815	-0.003	0.546	-0.065	0.799	-0.010
	our por rear activitient	Multiple Cars	116199	0.949	0.730	0.025	0.367	0.013	-0.402	0.048	0.589	0.01
		AT(02:01-02:00) AT(02:01-04:00)	46265	-3.521	0.150	0 129	-1.331	0.040	D 163	0.136	-1.350	-8.009
		A104-01-0000	14200	-2.818	-0.014	0.142	-1.101	-0.071	0.131	0.109	-1.088	-0.00
		AT(05:01:00:00) AT(05:01:10:00)	98236	9.722	0.219	0.053	0.158	0.001	0.010	0.009	0.006	<0.00
	Accodent Time	AT(10:01-12:00) AT(12:01-14:00)	86294	0.222	0.058	0.018	0.148	-0.028	0.010	-0.009	0.086	<0.00
	Physical street	AT(14:01-16:00)	132191	0.222	0.007	-0.628	0.070	-0.014	-0.010	-0.009	0.086	<8.00
		A7(18:01-20:00) A7(20:01-22:00)	136823	0.222	0.028	0.013	0.088	0.007	-0.010	-0.009	0.086	-0.00
		AT(22:01:00:00)	102938	0.222	-0.039	0.015	-0.103	0.127	0.010	-0.009	0.088	-0.00
		Missing	101057	0.357	0.030	0.067	0.136	0.019	-0.036	-0.014	0 130	×0.00
		Sunday Monday	143338	-2.605	0.126	0.028	0.392	0.028	0.126	0.028	0.390	0.019
	and a second second second	Tuesday	143945	0.243	0.033	0.009	0.085	0.009	0.011	-0.003	0.030	-0.000
	Accident Day	Wednesday	147130	0.243	0.011	0.008	0.091	0.007	0.011	-0.003	0.036	-0.000
		Baturday	171857	0.243	-0.012	-0.011	-0.111	0.013	0.011	-0.003	0.038	-0.000
		January	87000	0.243	0.012	0.012	0.005	0.047	0.011	0.004	0.000	-0.000
		February March	77658	0.221	0.020	0.005	0.048	0.009	0.007	0.004	0.009	0.01
		April	83574	-0.221	0.009	0.018	-0.006	-0.028	-0.002	0.004	0.009	0.01
	1255 (Q.S. 1	May	91104	-0.221	-0.002	0.016	0.007	-0.033	-0.002	0.004	0.009	-0.01
	Accident Month	July	91308	-0.221	0.055	0.022	0.022	-0.051	0.002	0.004	0.009	0.01
		September	90267	-0.221	-0.076	0.007	0.009	0.043	-0.002	0.004	0.000	-0.019
		October	101330	0.099	-0.001	0.002	0.008	0.016	0.001	0.002	-0.004	0.00
		November	102916	2.294	0.019	-0.039	0.074	0.143	0.021	0.040	0.095	0.154

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

4.3.1. Dichotomous quantification

- a) Built-up speed area manifested positive stance/ attribute, but non-built-up speed area contained negative stance.
- b) Carriageway hazards manifested positive stance/ attribute, but non-hazards expressed negative stance.
- c) 'At junction' manifested positive stance, but 'out of junction' had negative stance.
- d) 'Junction control' had positive stance, but 'non-control' had negative stance.
- e) Pedestrian crossing at human control quantificated negative stance, but non-control quantificated positive stance.
- f) Pedestrian crossing at physical facilities quantificated positive stance, but non-physical quantificated negative stance.
- g) Both special conditions and non-conditions quantificated positive stance.

4.3.2. Nominal quantification

- h) Eastern region as well as London, South-West, and South-East of England region, manifests positive stance. On the other hand, North-East region as well as North-West, Yorkshire/ the Humber, East Midlands, and West Midlands, contains negativity.
- i) 'Day light' as well as 'darkness with light unlit', 'darkness without lighting', and 'darkness with lighting unknown' of lighting conditions quantificated positive stance. Only 'darkness with lights lit' quantificated negative stance.
- j) All the categories of 'road type', except 'unknown RT', had negative stance.
- k) 'Raining without high winds' as well as 'snowing without high winds', 'snowing with high winds', 'fog or mist', and 'other/ unknown' of weather conditions had positive quantification. On the other hand, 'fine without high winds', 'fine with high winds', and 'raining with high winds' had negative stance.

4.3.3. Ordinal quantification

- I) All categories of OSGR easting band, except OSE 400-500km, quantificated negative stance.
- m) All categories of OSGR northing band, except OSN 100-200km, quantificated negative stance.
- n) All categories of speed limit zone, except 30 mph, quantificated negative stance.
- **o**) Single casualty per accident had negative stance, but double as well as multiple casualties per accident had positive stance.
- p) Single car per accident had negative stance, but double as well as multiple cars per accident had positive stance.

4.4. Variance Accounted For (VAF) in Variables

The highest VAF in vector coordinates of the first component was in 'built-non-built-up speed area (0.690)' followed by 'speed limi zone (0.652)', 'lighting conditions (0.314)', 'casualty per accident (0.168)', and 'pedestrian crossing at physical-non-physical facilities (0.161)'. England region (0.694) followed by OSGR northing band (0.502), and OSGR easting band (0.397) had the highest in the second component. On the other hand, 'road type (0.678)' had the highest in the third component followed by 'weather conditions (0.586)', 'accident year (0.152)', 'special-non-special conditions (0.007)', 'accident month (0.006)', and 'pedestrian crossing at

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

human control-non-control (0.006)'. Further, in the fourth component, 'car per accident (0.526)' had the highest followed by 'junction-non-junction details (0.329)', 'junction controlnon-control (0.169)', 'accident time (0.126)', 'accident day (0.011)', and 'carriageway hazards-non-hazards (0.009)'. These are detailed in Table 4.4 and displayed in Figure 4.4. It displays the coordinates for each item on each dimension in relation to the centroid (0, 0). It is noted that displayed a very small mean coordinate (very close to or below 0.100) indicates these items not contributing substantially to the principal components.

CATPCA Loading plots of eigenvalue (VAF) are as follows:

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Figure 4.4: Loading Plots of Eigenvalue (VAF) in CATPCA Components

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Table 4.4. Variance Accounted For (VAF) in CATPCA of KSI Car Accidents in England Variance Accounted For (VAF) in CATPCA of KSI Car Accidents in England

		Centro	id Coor	dinates		Te	otal (Vec	tor Cod	ordinates	s)
		Dime	nsion		Maan		Dimer	nsion		Total
	1	2	3	4	mean	1	2	3	4	TOLAI
Built-non-Built-up Speed Area	0.690	0.070	0.002	0.037	0.200	0.690	0.070	0.001	0.037	0.798
Speed Limit Zone	0.739	0.071	0.005	0.046	0.215	0.652	0.055	0.003	0.043	0.753
Lighting Conditions	0.315	0.051	0.009	0.027	0.101	0.314	0.051	0.001	0.002	0.367
Casualty per KSI Car Accident	0.168	0.019	0.001	0.135	0.081	0.168	0.019	0.001	0.135	0.323
Pedestrian Crossing at Physical-non-Physical Facilities	0.162	0.003	0.013	0.015	0.048	0.161	0.003	0.007	0.014	0.185
England Region	0.273	0.712	0.030	0.005	0.255	0.200	0.694	0.008	< 0.001	0.903
OSGR Northing Band	0.119	0.557	0.229	0.009	0.229	0.103	0.502	0.096	0.001	0.701
OSGR Easting Band	0.098	0.463	0.104	0.005	0.167	0.079	0.397	0.007	< 0.001	0.483
Road Type	0.059	0.043	0.678	0.039	0.205	0.035	0.033	0.678	0.029	0.775
Weather Conditions	0.021	0.032	0.586	0.025	0.166	0.012	0.032	0.586	0.024	0.655
Accident Year	0.003	0.003	0.220	0.025	0.063	0.002	0.001	0.152	0.021	0.175
Special Conditions-non-Conditions at Site	0.003	< 0.001	0.007	0.001	0.003	0.002	< 0.001	0.007	0.001	0.010
Accident Month	0.001	< 0.001	0.007	0.001	0.002	<0.001	< 0.001	0.006	0.001	0.007
Pedestrian Crossing at Human Control-non-Control	0.002	< 0.001	0.006	0.001	0.003	0.001	< 0.001	0.006	0.001	0.008
Car per KSI Accident	0.029	0.005	0.028	0.526	0.147	0.012	0.003	0.027	0.526	0.568
Junction-non-Junction Details	0.307	0.058	0.033	0.329	0.182	0.307	0.058	0.032	0.329	0.726
Junction Control-non-Control	0.146	0.032	0.011	0.169	0.090	0.146	0.031	0.009	0.169	0.355
Accident Time	0.010	0.012	0.013	0.130	0.041	0.008	0.010	0.009	0.126	0.153
Accident Day	0.009	0.003	0.003	0.014	0.007	0.008	0.003	0.002	0.011	0.024
Carriageway Hazards-non-Hazards	0.006	< 0.001	0.002	0.009	0.004	0.006	< 0.001	0.002	0.009	0.017
Active Total	3.159	2.136	1.988	1.549	2.208	2.905	1.962	1.640	1.478	7.986

4.5. Rotated Variance Accounted For (RVAF) in Variables

The rotated VAF had a little change and there was also a little change of variable in component to component. These are detailed in Table 4.5.

Table 4.5. Rotated	Variance Accounted	For (RVAF) in	n CATPCA of	KSI Car A	Accidents in
England					

Rotated Variance Accounted F	or (RVA	AF) in C	ATPCA	ofKSI	Car Acc	idents i	n Engla	nd		
		Centro	id Coo	rdinates		T	otal (Ve	ctor Cod	ordinates	s)
		Dime	nsion		Maan		Dime	nsion		Total
	1	2	3	4	mean	1	2	3	4	TOLAI
Built-non-Built-up Speed Area	0.752	0.001	0.035	0.010	0.200	0.752	0.001	0.035	0.010	0.798
Speed Limit Zone	0.806	0.004	0.037	0.014	0.215	0.714	0.003	0.023	0.013	0.753
Casualty per KSI Car Accident	0.301	< 0.001	0.022	< 0.001	0.081	0.301	< 0.001	0.022	< 0.001	0.323
Lighting Conditions	0.285	< 0.001	0.111	0.006	0.101	0.278	< 0.001	0.086	0.003	0.367
Pedestrian Crossing at Physical-non-Physical Facilities	0.169	0.012	0.007	0.010	0.049	0.166	0.012	0.006	0.002	0.185
England Region	0.096	0.877	0.005	0.042	0.255	0.011	0.874	0.001	0.016	0.903
OSGR Northing Band	0.014	0.722	0.003	0.178	0.229	0.003	0.679	0.001	0.018	0.701
OSGR Easting Band	0.008	0.577	0.002	0.086	0.168	0.001	0.477	< 0.001	0.004	0.483
Junction-non-Junction Details	0.087	< 0.001	0.638	0.002	0.182	0.087	<0.001	0.638	0.002	0.726
Car per KSI Accident	0.193	0.003	0.392	< 0.001	0.147	0.180	0.003	0.386	< 0.001	0.568
Junction Control-non-Control	0.072	0.004	0.559	0.008	0.161	0.040	< 0.001	0.312	0.003	0.355
Accident Time	0.006	0.003	0.154	0.002	0.041	0.002	0.001	0.149	< 0.001	0.153
Accident Day	0.002	< 0.001	0.026	< 0.001	0.007	0.002	< 0.001	0.021	< 0.001	0.024
Carriageway Hazards-non-Hazards	< 0.001	0.002	0.015	< 0.001	0.004	< 0.001	0.002	0.015	< 0.001	0.017
Road Type	0.025	0.005	0.021	0.782	0.208	0.001	0.003	0.002	0.769	0.775
Weather Conditions	0.007	0.003	0.007	0.647	0.166	0.001	0.002	0.005	0.647	0.655
Accident Year	0.003	0.005	0.004	0.239	0.063	0.001	0.002	0.001	0.171	0.175
Special Conditions-non-Conditions at Site	0.002	< 0.001	< 0.001	0.010	0.003	< 0.001	< 0.001	< 0.001	0.009	0.010
Pedestrian Crossing at Human Control-non-Control	0.002	< 0.001	< 0.001	0.008	0.003	< 0.001	< 0.001	< 0.001	0.008	0.008
Accident Month	0.001	< 0.001	0.003	0.005	0.002	< 0.001	< 0.001	0.002	0.005	0.007
Active Total	2.828	2.219	2.040	2.051	2.284	2.540	2.060	1.705	1.680	7.986

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

4.6. Correlation in Original Variables

Out of 190 unique pairs of twenty original variables (i.e., $20_{c_2} = 190$) in the analysis, only three pairs had greater (> 0.30) or lesser (< -0.30) correlation and such pair of variables are 'junction-non-junction details vs Junction control-non-control ($\rho = -0.966$)', 'speed limit zone vs built-non-built-up speed area ($\rho = 0.464$)', and 'OSGR northing band vs England region ($\rho = 0.399$)'. The correlation matrix of original variables are displayed in Table 4.6.

Table 4.6. Correlation Matrix of Original Variables in CATPCA of KSI Car Accidents in England

		Correl	ation M	where we	Orderin al	Variabil	an in CA	TRCA	FK SLC	ar Acele	lants in	England	*							
	coldert Year	Correl eavy peaks on the control	ation M space-prove-provide Memobility	unetan Contral-man-Central	urkton-non-Surkton Details	Adestrary Crossing 9(14,man Contra non-Currier	scheman Crussing at Physical-nun-Physical Facilities 90	pecial Conditions-non-Conditions at Sale	ngand Ragun	inding Conditions	ents in	Finden Conditions	BGR Easing Band	SDR Northing Band	peed.umit.Zone	sexually per KSI Car Accident	lar per KSI Accident	doldent Time	coldent Day	ccident Month
Accident Year	1.000	00	.0.		- 2 -	a.	. 0.		ιu.		at .	5		0	10	0	.0	٩	۹.	4
Built non Built up Speed Area	-0.010	1,000																		
Carriageway Hazards-non-Hazards	-0.020	-8.044	1.000																	
Junction Control-non-Control	-0.031	-0.285	0.053	1.000																
Junction-non-Junction Details	-0.005	0.298	-0.050	-0.966	1.000															
Pedestrian Crossing at Human Control non-Control	0.004	0.028	0.002	-0.015	0.015	1.000														
Pedestrian Crossing at Physical-non-Physical Facilities	0.074	0.234	-0.022	-0.176	0.181	9.060	1.000													
Special Conditions-non-Conditions at Site	-0.002	-0.035	0.020	0.017	-8.018	<0.001	0.001	1.000												
England Region	0.030	.0.054	0.015	0.008	-0.015	.0.009	0.002	-0.007	1.000											
Lighting Conditions	0.038	-0.138	-0.010	0.050	0.022	0.017	0.067	0.012	0.031	1,000	1.121.11									
Road Type	-0.051	0.130	-0.002	0.027	-0.025	0.008	0.076	-0.031	-0.012	0.027	1.000									
Weather Conditions	0.052	0.022	-0.002	-0.017	0.017	-0.002	-0.001	-0.014	0.005	0.068	0.009	1.000								
OCCR Notting Band	0.025	-0.041	0.005	0.034	-0.022	-0.001	-0.017	0.003	-0.052	0.004	0.014	0.021	1,000	1.000						
Social Limit Topo	0.043	0.009	0.012	0.458	0.049	8.042	0.009	0.004	0.040	0.0624	0.134	0.011	0.052	0.073	1.000					
Casualty par KSI Car Accided	0.042	0.290	0.003	0.005	0.100	8.015	.0.105	0.024	0.040	0.003	0.028	0.020	0.015	0.048	.0 101	1.050				
Cariner KSLArrident	0.018	.0.151	-0.033	.0.090	0.080	.8.023	.0 125	0.029	0.059	6.111	.0.023	.0.005	0.014	-0.007	.0.114	0.250	1.000			
Accident Time	0.045	0.052	.0.011	.0.033	0.036	.0.011	0.005	.0.615	.0.022	0.090	0.043	.0.001	0.007	0.013	0.030	.0 017	0.025	1.000		
Acodent Day	-0.017	0.021	.0.003	.0.004	0.000	0.001	0.010	.0.005	.0.001	0.021	0.007	0.005	0 001	-0.002	0.014	-0.019	.0.010	0.034	1.005	
Accident Month	0.017	0.005	0.002	0.004	0.004	0.002	-0.001	<0.001	0.002	0.057	0.001	0.027	0.003	-0.004	-0.007	0.005	0.013	0.009	0.002	1.000
Dimension	1	2	3	4	5	8	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Eigenvalue	2.461	1.588	1.415	1.196	1.164	1,042	1.013	1.004	0.995	0.988	0.974	0.959	0.94	0.889	0.825	0.798	0.659	0.571	0.484	0.033

4.7. Correlation in Transformed Variables

Out of 190 unique pairs of twenty transformed variables (i.e., $20_{c_2} = 190$) in the analysis, only seven pairs had greater (> 0.30) or lesser (< -0.30) correlation and such pair of variables are 'junction-non-junction details vs Junction control-non-control ($\rho = 0.884$)', 'lighting conditions vs built-non-built-up speed area ($\rho = -0.434$)', 'weather conditions vs road type ($\rho = 0.354$)', 'OSGR easting band vs England region ($\rho = -0.535$)', 'OSGR northing band vs England region ($\rho = 0.700$)', 'speed limit zone vs built-non-built-up speed area ($\rho = -0.372$)'. The correlation matrix of transformed variables are displayed in Table 4.7.

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Table 4.7. Correlation Matrix of Transformed Variables in CATPCA of KSI Car Accidents in England

	C	orrelatio	on Matri	ix of Tra	motorm	ed Varia	ibles in	CATPC	orKS	Car Ac	cidents	in Engl	and							
	Accidente Y eater	Built-nen-Built-up Epead Area	Certegeway Hackride-con-Hacards	Arretion Control-non-Control	arretion-non-Junction Details	Pedestran Crassing at Human Contra-non-Carstol	Pedestran Crossing at Physical-nun-Physical Facilities	Special Conditions-con-Conditions of Star	England Regian	Ligrising Constitutes	Goad Type	Neather Dondstme	05GR Easing Band	080R Northing Band	Speed Lime Zone	Desually per KBI Car Appldant	Car per KSI Accident	Accident Timit	Accident Day	Accident Months
Accident Year	1 000	1.000	- 7.0	-		-											1.00			
But-ton-Bull-up Speed Area	-0.010	1.000																		
Carriageway Hazards-non-Hazards	-0.021	-0.026	1.000	100																
Junction Control-non-Control	-0.072	0.272	-0.048	1.000	1.1.1.1															
Junction-non-Junction Details	-0.005	0.296	-0.055	0.884	1.000															
Pedesthan Creasing at Human Control non-Control	-0.004	-0.028	0.001	-0.014	-0.015	1.000														
Pedestrian Crossing at Physical-non-Physical Facilities	0.074	0.234	-0.025	0.101	0.101	-0.060	1.000													
Special Conditions non-Conditions at Site	0.002	-0.035	0.075	0.016	-0.010	<0.001	0.001	1000												
Englind Region	0.015	0.135	0.027	0.002	0.072	0.004	0.101	0.013	0.002	1000										
Egning Conditions	0.000	-0,636	0.029	-0.194	0.212	0.010	-0130	0.009	-0.057	1,000	+									
North Part Constitute	0.129	0.074	0.009	0.000	0.009	0.004	0.017	0.006	0.000	0.007	0.364	1005								
OSCO Eastern Rand	0.000	0.050	0.024	0.000	0.054	0.001	0.047	0.004	0.635	0.007	0.044	0.020	1.000							
OSOR Labory Date	0.025	0.075	0.025	0.013	0.041	0.001	0.085	0.005	0 700	0.000	0.045	0.036	0.237	1 000						
Speed Light Tops	0.022	0.075	0.019	0.035	0.041	0.001	0.000	0.005	0.145	4 172	0.003	0.035	0.070	0.075	1.000					
Camata per KEI Car Arridant	0.004	0.040	0.004	0.099	0.000	0.016	0.101	0.024	0.066	0.128	0.005	0.005	0.024	0.046	.0 276	1.000				
Carper KSI Acodest	0.013	0.203	0.007	0.121	0.141	0.024	0.124	0.024	0.014	0.023	0.013	0.045	0.0024	0.034	0.130	0.229	1.000			
Accident Time	0.013	0.027	0.008	0.048	0.075	.0.008	0.005	<0.001	.0.010	.0.078	0.001	.0.021	0.011	.0.005	0.025	0.054	0.147	1 000		
Accident Day	.0.001	0.044	0.001	0.071	0.034	.0.011	0.020	.0.001	0.009	_Bot7	0.001	-01001	0.001	0.007	0.040	0.075	0.058	0.138	1.000	
Accident Month	0.035	0.004	0.001	0.001	<0.001	0.005	0.015	0.001	0.008	0.015	0.004	0.050	0.006	-0.007	=0.001	0.004	0.023	0.003	0.021	1.000
Dimension	1	2	3	4	5	8	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Eigenvalue	2,951	1.941	1.605	1.438	1.167	1.074	1.064	1,004	0.985	0.968	0,916	0.851	0.837	0.769	0.679	0.644	0.632	0.204	0.171	0.112
1976 1976 1970			Miss	sing white	es were	imputed	with the	mode of	the qual	ntified vi	risble									

4.8. Component Loadings and Rotated Component Loadings

The reporting CATPCA for KSI car accidents is shown in Table 4.8. Also, the CATPCA component loadings plots as well as rotated loadings are displayed in Figure 4.8. The table for Component Loadings shows the coordinates for each item on each dimension and these are plotted in the next element of the output, the scatter plot displayed above-right.

4.8.1. First Categorical Principal Component (CATPC-1)

First categorical principal component was good with internal consistency (³*Cronbach's* $\alpha = 0.7$). Also its eigenvalue was $\lambda_1 = 2.91$. It comprised five out of 20 original variables, but also five out of 20 variables in rotated model (see the report in Table 4.8). The variables in CATPC-1 reformed with increasing for 'built-non-built up speed area' as well as 'speed limit zone', and 'pedestrian crossing at physical-non-physical facilities', having positive associations with first component; but with decreasing for 'lighting conditions' as well as 'casualty per accident', having nagative associations with first component. These variables in CATPC-1 were in the 4-dimensional factor space to best approximate the data in the least square sense.

³ Internal Consistency for Cronbach's Alpha: Excellent ($\alpha \ge 0.9$); Good ($0.7 \le \alpha < 0.9$); Acceptable ($0.6 \le \alpha < 0.7$); Poor ($0.5 \le \alpha < 0.6$); Unacceptable ($\alpha < 0.5$).

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

4.8.2. Second Categorical Principal Component (CATPC-2)

Second categorical principal component was poor with internal consistency (*Cronbach's* $\alpha = 0.52$). Also its eigenvalue was $\lambda_2 = 1.962$. It comprised three out of 20 original variables, but as well as same number of original variables in rotated model (see the report). The variables in CATPC-2 reformed with increasing for 'England region' as well as 'OSGR northing band', having positive associations with second component; but with decreasing for 'OSGR easting band' having negative association with second component. These variables in CATPC-2 were in the 4-dimensional factor space for variance-maximising direction orthogonal to CATPC-1.

4.8.3. Third Categorical Principal Component (CATPC-3)

Third categorical principal component was under-poor/ unacceptable with internal consistency (*Cronbach's* $\alpha = 0.41$). Also its eigenvalue was $\lambda_2 = 1.640$. It comprised six out of 20 original variables but as well as same number of original variables in rotated model (see the report). The variables in CATPC-3 reformed with increasing for 'road type' as well as 'weather conditions', and 'accident month', having positive associations with third component; but with decreasing for 'accident year' as well as 'special condition-non-condition at site', and 'pedestrian crossing at human control-non-control', having negative associations with third component. These variables in CATPC-3 were in the 3-dimensional factor space for variance-maximising direction orthogonal to CATPC-1 and CATPC-2.

4.8.4. Fourth Categorical Principal Component (CATPC-4)

Fourth categorical principal component was under-poor/ unacceptable with internal consistency (*Cronbach's* $\alpha = 0.34$). Also its eigenvalue was $\lambda_2 = 1.48$. It comprised six out of 20 original variables but as well as same number of original variables in rotated model (see the report). The variables in CATPC-4 reformed with increasing for 'car per accident' as well as 'junction-non-junction details', 'junction controll-non-controll', 'accident time', 'accident day', having positive associations with fourth component; but with decreasing for 'carriageway hazards-non-hazards', having negative association with fourth component. These variables in CATPC-4 were in the 4-dimensional factor space for variance-maximising direction orthogonal to CATPC-1, CATPC-2, and CATPC-3.

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Table 4.8. Component Loadings in CATPCA of KSI Car Accidents in England Reporting Component Loadings in CATPCA of KSI Car Accidents in England

Component Loadings	100	S			Rotated Component Loadings								
14 A 44		Dime	nsion	_	M. atta	120	Dimer	nsion					
Vanable	1	2	3	4	Variable	1	2	3	4				
Built-non-Built-up Speed Area	0.831	-0.264	0.035	-0.191	Built-non-Built-up Speed Area	0.867	0.037	0.186	0.101				
Speed Limit Zone	0.808	0.236	0.053	-0.207	Speed Limit Zone	0.845	0.052	0.153	0.114				
Lighting Conditions	-0.561	0.225	0.026	0.039	Casualty per KSI Car Accident	-0.549	0.008	0.147	0.006				
Casualty per KSI Car Accident	-0.410	0.138	0.031	0.368	Lighting Conditions	-0.527	0.007	-0.294	0.057				
Pedestrian Crossing at Physical-non-Physical Facilities	0.401	-0.052	.0.083	-0.119	Pedestrian Crossing at Physical-non-Physical Facilities	0,407	0.108	0.078	-0.041				
England Region	0.448	0.833	-0.087	0.019	England Region	0.104	0.935	0.037	0.127				
OSGR Northing Band	0.321	0.709	-0.309	-0.024	OSGR Northing Band	0.056	0.824	0.038	-0.134				
OSGR Easting Band	-0.281	-0.630	0.085	0.002	OSGR Easting Band	-0.038	-0.691	0.003	-0.063				
Road Type	0.186	0.181	0.823	0.172	Junction-non-Junction Details	0.294	0.009	0.799	0.042				
Weather Conditions	0.112	0.179	0.765	0.156	Car per KSI Accident	-0.424	0.050	0.621	0.014				
Accident Year	-0.042	-0.027	-0.389	-0.144	Junction Control-non-Control	0.199	-0.009	0.558	0.057				
Special Conditions-non-Conditions at Sile	-0.040	-0.015	-0.084	-0.032	Accident Time	-0.046	-0.039	0.386	0.001				
Accident Month	-0.002	0.003	0.079	-0.023	Accident Day	0.047	-0.011	0.146	0.007				
Pedestrian Crossing at Human Control non-Control	-0.035	0.013	-0.077	-0.032	Carriageway Hazards-non-Hazards	0.018	-0.048	-0.122	0.005				
Car per KSI Accident	-0.108	0.057	0.166	0.725	Road Type	0.023	0.058	-0.043	0.877				
Junction-non-Junction Details	0.554	-0.241	-0.180	0.574	Weather Conditions	-0.032	0.042	-0.068	0.805				
Junction Control-non-Control	0.382	-0.176	-0.097	0.411	Accident Year	0.037	0.043	-0.029	-0.413				
Accident Time	0.090	-0.099	-0.096	0.354	Special Conditions-non-Conditions at Site	-0.015	-0.010	-0.017	-0.097				
Accident Day	0.089	-0.055	-0.044	0.104	Pedestrian Crossing at Human Control-non-Control	-0.011	-0.008	-0.017	-0.088				
Carriageway Hazards-non-Hazards	-0.076	-0.012	0.048	-0.096	Accident Month	0.009	-0.020	-0.041	0.067				
Variable Principal Normalizat	ton				Rotation Method: Varimax with Kaiser Normalization. Ro	station co	onverged	l in 5 iter	ations.				
Model Summary				- 1	Model Summary								
Cronbach's Alpha	0.690	0.516	0.411	0.340	Cronbach's Alpha	0.647	0.541	0.477	0.358				
Variance Accounted For (Total (Eigenvalue))	2.905	1.962	1.640	1.478	Variance Accounted For (Total (Eigenvalue))	2.540	2.060	1.705	1.680				
Total Cronbach's Alpha in 4-dimensions		0.9	21		Total Cronbach's Alpha in 4-dimensions		0.9	21					
Total Variance Accounted For (Total (Eigenvalue))		7.9	86		Total Variance Accounted For (Total (Eigenvalue))		7.9	86					
Case Processing Summary													
Valid Active Cases					579496								
Active Cases with Missing Values					510064								
Supplementary Cases					0								
Total					1089560								
Cases Used in Analysis					1089560								
Credit. CA	TPCA V	ersion 2	2.0 by L	eiden SP	SS Group, Leiden University, The Netherlands								

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Figure 4.8: Scatter Matrix of Components Loadings and Rotated Component Loadings in CATPCA of KSI Car Accidents in England

4.9. Overview in CATPCA for Road KSI Accidents

CATPCA revealed that four-component solution met the interpretability criterion. The 20 variables were reduced to four components that explained 92.1% (total Cronbach's α based on grand total eigenvalue) of the total variance. A Varimax orthogonal rotation was applied to aid interpretability. The rotated solution exhibited 'simple structure' (Thurstone, 1947). The data was consistent with the accident attributes in the 20-variable dataset that was designed to measure with strong loadings of 5-variables on Component-1, 3-variables on Component-2, 6-variables on Component-3, and 6-variables on Component-4. Component loadings of the rotated solution had a little change.

5. Research Findings, Discussions, and Conclusion

The aim of this study was to identify the component structure of road KSI car accidents in England based on categorical variables in STATS19 database for the period of 1979-2015 by applying categorical principal component analysis. Based on 39 potential variables, this study used CATPCA as an alternative to reduce the large number of variables into the four dimensions of KSI car accidents that have been identified. This study proceeded with 33 fit variables after a series of analyses to determine the fit of variables to be selected. Then,

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

following the four steps of analysis in the CATPCA, this study reduced and grouped the 20 variables into four principal components. As the data consisted of mainly categorical types (i.e., dichotomous, nominal, and ordinal), the optimal scaling CATPCA allowed this study to jointly analyse and transform these categorical data into numerical values. The aggregated summation of the data of 1089560 cases (where only 579496 cases valid) on these 20 variables was later transformed into component/object scores. These scores are the manifestations of the surrogates of the four components of KSI car accidents identified in this study. These are the best composite scores to use.

- 1) First categorical principal component comprised five out of 20 original variables. It reformed with increasing for 'built-non-built up speed area' as well as 'speed limit zone', and 'pedestrian crossing at physical-non-physical facilities', having positive associations with first component; but with decreasing for 'lighting conditions' as well as 'casualty per accident', having nagative associations with first component.
- 2) Second categorical principal component consisted of three variables that reformed with increasing for 'England region' as well as 'OSGR northing band', having positive associations with second component; but with decreasing for 'OSGR easting band' having negative association with second component.
- 3) Third categorical principal component comprised six variables that reformed with increasing for 'road type' as well as 'weather conditions', and 'accident month', having positive associations with third component; but with decreasing for 'accident year' as well as 'special condition-non-condition at site', and 'pedestrian crossing at human control-non-control', having negative associations with third component.
- 4) Fourth categorical principal component comprised six variables that reformed with increasing for 'car per accident' as well as 'junction-non-junction details', 'junction controll-non-controll', 'accident time', 'accident day', having positive associations with fourth component; but with decreasing for 'carriageway hazards-non-hazards', having negative association with fourth component.

This research leads a road car safety practice/ policy as a key policy priority that should therefore be to plan for the long-term prevention of road car accidents. The identified significant variables leading KSI car accidents, can be taken special attention so that KSI car accidents can be reduced. This research can be used to develop targeted interventions aimed at road safety practice/ policy. The findings of this study have several important implications for future practice. These findings are dynamic if policymakers are to be able to identify those individuals at greatest threat of KSI car accident involvement. Policies to reduce the KSI car accidents and associated casualties will remain unnecessarily high for certain individuals in the society, and as a society people will all suffer. Where there is an alert today, there is an alive tomorrow. Stay Alive – Think and Drive.

Print ISSN: 2053-2229 (Print),

Online ISSN: 2053-2210 (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

REFERENCES

- El-Basyouny, K., and Sayed, T. (2009). Accident Prediction Models with Random Corridor Parameters. Accident Analysis & Prevention. 41(5), p.1118-1123.
- Harrel, F. (2015). Regression Modelling Strategies. Springer Series in Statistics book series (SSS): p.219-274. Springer, Cham. https://doi.org/10.1007/978-3-319-19425-7_10.
- Kleinbaum, D., and Klein, M. (2010). Ordinal Logistic Regression. In: Logistic Regression. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1742-3_13.
- Saukani, N., and Ismail, N.A. (2019). Identifying the Components of Social Capital by Categorical Principal Component Analysis (CATPCA). *Soc Indic Res* **141**, 631–655. https://doi.org/10.1007/s11205-018-1842-2
- Hung, Younshik, and Tai-Jin Song. (2018). Safety Analysis of Motorcycle Crashes in Seoul Metropolitan Area, South Korea: An Application of Nonlinear Optimal Scaling Methods. *International Journal of Environmental Research and Public Health* 15, no. 12: 2702. https://doi.org/10.3390/ijerph15122702