International Journal of Mathematics and Statistics Studies (IJMSS)

EA Journals

Application of Newton Raphson Method to Non – Linear Models

Abstract

Maximum likelihood estimation is a popular parameter estimation procedure however parameters may not be estimable in closed form. In this work, the maximum likelihood estimates from different distributions were obtained after the failure of the likelihood approach. The targeted models are Non Linear models with an application to a Logistic regression model. Although, obtaining the estimate of parameters for non linear models cannot be easily obtained directly. That is the solution is intractable. So there is a need to look else where, so as to obtain the solutions . In this work, R statistical package was used in performing the analysis. The result shows that convergence was attained at the 18th iteration out of 21. This also provides the values and the maximum estimate for β0 and β1.

Keywords: Intractable Functions, Likelihood Function, maximum likelihood

cc logo

This work by European American Journals is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License

 

Recent Publications

Email ID: editor.ijmss@ea-journals.org
Impact Factor: 7.80
Print ISSN: 2053-2229
Online ISSN: 2053-2210
DOI: https://doi.org/10.37745/ijmss.13

Author Guidelines
Submit Papers
Review Status

 

Scroll to Top

Don't miss any Call For Paper update from EA Journals

Fill up the form below and get notified everytime we call for new submissions for our journals.