International Journal of Mathematics and Statistics Studies (IJMSS)

EA Journals

A TWO-GROUP CLASSIFICATION MODELS FOR BINARY VARIABLES

Abstract

This paper is a study of two-group classification models for binary variables. Eight classification procedures for binary variables are discussed and evaluated at each of 118 configurations of the sampling experiments. The results obtained ranked the procedures as follows: Optimal, Linear discriminant, Maximum likelihood, Predictive, Dillon Goldstein, Full multinomial, Likelihood and Nearest neighbour. Also the result of the study show that increase in the number of variables improve the accuracy of the models.

Keywords: Binary Variables, Classification Models, Dillon Goldstein, Linear Discriminant, Misclassification, Optimal, Predictive, and Multinomial, maximum likelihood

cc logo

This work by European American Journals is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License

 

Recent Publications

Email ID: editor.ijmss@ea-journals.org
Impact Factor: 7.80
Print ISSN: 2053-2229
Online ISSN: 2053-2210
DOI: https://doi.org/10.37745/ijmss.13

Author Guidelines
Submit Papers
Review Status

 

Scroll to Top

Don't miss any Call For Paper update from EA Journals

Fill up the form below and get notified everytime we call for new submissions for our journals.