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ABSTRACT: Aerial methane surveys of oil and natural gas systems have discovered large emissions, 

which are missing or vastly undercounted in official estimates. We integrate approximately one million 

aerial site measurements into regional emissions inventories, employing empirically grounded emissions 

simulations to estimate small emissions. We infer emissions inventories for six regions in the United States 

comprising 52% of onshore oil and 29% of gas production over fifteen aerial campaigns. Total estimated 

emissions range from 9.63% [9.03%, 10.37%] of natural gas production, roughly nine times the US 

government estimate, to 0.75% [0.65%, 0.85%] in a high-productivity gas-rich region. Aerially measured 

emissions at 0.05%-1.44% of well sites contribute 50%-81% of total emissions in twelve of fifteen 

campaigns. The social cost of methane emissions from these measured regions is roughly $9.4 billion per 

year, in addition to roughly $1 billion in lost sales. This highlights the importance of incorporating 

comprehensive remote sensing surveys into emissions inventories and efforts to benchmark and reduce 

methane emissions. 
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INTRODUCTION  

Accurately estimating methane emissions from the oil and natural gas sector is vitally important for 

mitigating climate change. Current global inventories estimate oil and gas sector emissions of 84 

Tg(CH4)/yr [72, 97] 1. These emissions represent 16% of global anthropogenic greenhouse gas emissions 

from fossil fuels assuming a 20-year global warming potential 1–3. However, this estimate, and all 

estimates like it, rely on coarse emission factors used with often-incomplete data. Many countries simply 

leverage the most general emission intensities from – for example – the United States Environmental 

Protection Agency’s Greenhouse Gas Inventory, or GHGI 4,5. In the last decade, efforts in the scientific 

literature have scaled actual ground measurements at up to ~1,000 sites to estimate industry-wide 

emissions, finding that emission factor approaches like the above can undercount actual emissions by as 

much as 40% 6. Even more recently, aircraft-based technologies have enabled a 1,000-fold increase in the 
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size of surveys and have found very large emissions sources. The results of these aerial surveys have not 

been incorporated into previous systematic inventories because no method existed to combine aerial 

measurements of large emission sources with inventory methods for smaller sources. In this paper, we 

close this gap by making a first estimate of large-scale comprehensive emissions across major producing 

regions by merging results of approximately 1 million site visits with an empirically-grounded statistical 

model of smaller emission sources. 6,7. 

In the 1990s, countries across the world began producing systematic inventories of emissions of methane 

and other greenhouse gasses to track progress toward climate goals 8. Many national inventories rely on 

scaling up relatively small datasets of component-level measurements, with underlying empirical data 

collection often conducted decades ago in the United States 8,9. Rutherford et al. recently demonstrated 

that updating the underlying component-level data to include the most recent studies largely reconciles 

these emission factor methods with the ground measurement literature 5. 

However, recent remote sensing surveys conducted by airplanes and satellites have discovered a 

substantial number of point-source methane emissions that are up to three orders of magnitude larger than 

those reported by ground-based well site methane surveys 10–18. In at least some cases, these low- 

probability but high-consequence sources can contribute the majority of methane emissions from an oil 

and gas producing region 13,14. Because ground-based surveys remained dominant in the literature 

throughout the 2010s, these remote sensing results suggest that emission factor methods such as the GHGI 

produce an even more significant undercount of total methane emissions than previously thought 6. 

Therefore, accurately characterizing the statistical distribution of methane emissions from the oil and gas 

system, including the likelihood of low-probability, high-emission events – sometimes termed “super- 

emitters” – is key to accurately estimating total methane emissions from an oil and gas-producing region 

7,19–22. Ground-based methods are inherently challenged to find these due to the low probability of 

occurrence at a given site and small sample sizes of ground campaigns. 

In order to make regional estimates including data from airplane-based point-source sensing methods, we 

need to understand emissions distributions both above and below the detection limit of the technology in 

question. Understanding the full distribution of methane emissions is also necessary when evaluating 

equivalence between different emission detection and mitigation programs. A theoretical basin dominated 

by large emissions will benefit from a scalable approach, such as airborne, that can rapidly detect large 

sources, while another basin with most methane lost to smaller emissions will be more effectively 

surveyed by ground-based or other high-sensitivity approaches. Note that while airplane-based area flux 

estimation methods can produce regional estimates that do not attribute emissions to sources 6, this study 

focuses on airplane-based point source methods, which can detect individual sources at the facility level. 

Air- or ground-based surveys each necessarily miss some emissions. However, quantifying that missing 

amount is a challenge. Ground-based surveys can see most sources reliably, although they may miss 

elevated sources such as tanks and flares 23, but are slow and expensive and therefore are generally limited 

to small sample sizes of tens to hundreds of sites. This limited sampling potentially misses large, low-
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probability emissions. In contrast, aerial surveys can cover vast swaths of landscape, but have a higher 

minimum detection limit that prevents them from seeing smaller sources. Thus, these two methods each 

exhibit complementary strengths and weaknesses, but past work has had difficulty reliably to synthesize 

these disparate results into a complete distribution of methane emission rates. Johnson et al. take steps in 

this direction, combining aerial measurements with emissions simulation methods for 8% of well sites in 

British Columbia 24. 

In this paper we develop an approach to construct such a complete distribution, from the smallest to the 

largest sources at the regional scale, leveraging comprehensive aerial surveys as well as a state-of-the-art 

component-level emission simulation tool 5. We define a comprehensive survey as including 

measurements of at least 50% of well sites and 80% of natural gas production in a region. Such region- 

specific distributions can inform methane emissions inventory development and guide deployment of 

methane-sensing technologies whose spatial coverage and detection limits most closely match the needs 

of a particular area. 

A key challenge in combining data from various methods is avoiding errors when datasets are joined. For 

example, data generated should cover the entire range of expected emission sizes, avoiding gaps at 

intermediate sizes. Also, one must avoid double-counting emission prevalence where two methods may 

both be able to see emissions of a given size. Another significant consideration is ensuring the surveyed 

area has an emissions profile that is representative of the area of interest, e.g. an entire oil and gas- 

producing basin. We describe below an approach that combines emissions simulation and aerial 

measurement methods into a single distribution, avoiding double-counting and mitigating data gaps in 

intermediate size ranges for all assets within a surveyed area. 

We generate a unified methane emissions distribution for surveyed oil and gas assets in six US oil and gas 

producing regions: the Permian, San Joaquin, Denver-Julesburg, Uinta and Fort Worth basins, and 

Appalachian Pennsylvania.  

Eleven of these are comprehensive, with the Pennsylvania and Permian 2020 and 2021 campaigns still 

covering at least 10% of well sites and 39% of natural gas production. These surveys include 959,573 well 

site measurements as well as a difficult-to- quantify number of measurements of midstream infrastructure, 

including compressor stations, gas processing plants, and pipelines. The surveyed areas within these 

regions comprise 29% of onshore US gas production and 52% of oil production. We combine fifteen large 

aerial surveys, conducted by Kairos Aerospace (Kairos) and researchers leading the Carbon Mapper (CM) 

project, with an empirically- grounded emissions simulation method introduced in Rutherford et al. 2021. 

We refine this model with input parameters based on regional characteristics, and estimate small-source 

midstream emissions based on state-level and national GHGI data . Given proper input data, this emissions 

simulation method produces results that largely reproduce the distribution of site-level emissions from a 

synthesis of the ground-based site-level methane measurement literature . We demonstrate that our 

combined emissions distribution is consistent with major ground-based and aerial methane measurement 

studies. 
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Uniting Aerial Measurement with Simulated Emissions  

For all oil and gas production assets covered in each surveyed region, we compute two well site-level 

emissions inventories: One based on aerial measurements and the other using the Rutherford et al. 

emissions simulation tool. We consider a well site to be a point location that may contain multiple wells 

and supplementary equipment such as liquids tanks, flares, and separators.  

Figure 1B provides a high- level overview of the 1000-realization Monte Carlo-based method we use to 

synthesize these two emissions inventories into a unified estimate of the distribution of methane emissions 

across surveyed well sites, which allows estimation of total emissions. 

Aerial surveys also cover midstream assets such as gathering and transmission pipelines, compressor 

stations, and gas processing plants. We estimate aerially measured and partially detected midstream 

emissions using the same approach as above. We do not have sufficient asset location data or emissions 

simulation tools for midstream infrastructure to estimate site-level emissions below the aerial detection 

limit. We instead estimate these emissions based on the EPA national and state-level GHGI, removing the 

fraction of emissions underlying those estimates that would be detectable by Kairos or CM 9,25. All 

Kairos data used in this study are fully anonymized, and include no identifying information for covered 

operators or their assets. See Materials and methods for further detail. 

Estimation at the site-level, rather than site-visit level, is key. Treating each aerial site visit as a completely 

independent measurement can introduce significant bias if a subset of assets that is not representative of 

the full survey area is disproportionately over-sampled, as demonstrated in the Supplementary Information 

(SI), Section S8. Note that we do not estimate methane emissions from local distribution or oil refining 

and transportation, which occur at facilities largely outside the surveyed regions. 

Methan Loss rates vary widely Over Space and Time  

Estimated methane loss rates – the emitted fraction of methane produced from oil and natural gas activity 

in a given region – vary widely across the studied US regions. Estimated rates are as low as 1.08% [0.98%, 

1.18%] in the Denver-Julesburg basin in Colorado in 2021, and 0.75% [0.65%, 0.85%] in a high-

productivity area of the Pennsylvania portion of the Appalachian basin, as shown in Figure 2. In contrast, 

for the New Mexico Permian 2018-2020 campaign, the loss rate is 9.63% [9.03%, 10.37%], an order of 

magnitude higher. The remaining campaigns range from roughly 2% to 6% methane loss rates. The 

production-weighted loss rate across all fifteen campaigns is 2.97% [2.78%, 3.18%], rising to 4.77% 

[4.51%, 5.07%] excluding the four campaigns focusing on high-productivity sub-regions. These loss rates 

assume a conservatively high methane fraction of 90% from 6. If the actual methane fraction is lower, 

these loss rates would increase correspondingly, as discussed in the SI, Section S7. 

Most of these estimates are far larger than the national EPA GHGI, which places the 2020 US-wide 

onshore methane loss rate at 1.01% [0.81%, 1.22%], after excluding municipal distribution systems, crude 

oil transportation and refining, and post-meter emissions for consistency with this study 9. These loss rates 
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also generally exceed state-specific EPA inventories, shown as dotted lines in Figure 2, although these 

estimates roughly align in the Denver-Julesburg and the studied region of Pennsylvania, and the EPA value 

actually exceeds our estimate for four of the five San Joaquin campaigns 25. See the Materials and 

methods for further description of our treatment of EPA GHGI estimates. 

Multiple surveys across the oil-focused San Joaquin and Permian basins demonstrate substantial variation 

in loss rates over time. The five San Joaquin campaigns find loss rates as low as 2.52% [2.20%, 2.87%] 

in fall 2021, and as high as 5.56% [4.97%, 6.23%] in 2017. All San Joaquin campaigns cover at least 80% 

of the basin’s gas production and over 80% of all actively producing well sites. Across the Permian 2020 

and 2021 campaigns, which cover similar areas, the methane loss rate varies from 2.10% [1.94%, 2.27%] 

to 2.81% [2.59%, 3.05%]. 

Even large surveys of the same region can produce divergent results if they cover different areas. Loss 

rates in the five Permian campaigns vary from 2.10% [1.94%, 2.27%] in the fall 2021 campaign, focusing 

on high-productivity areas, to 9.63% [9.03%, 10.37%] in the New Mexico Permian from 2018-2020. The 

largely overlapping 2019 survey of both Texas and New Mexico finds 5.29% [5.07%, 5.51%]. See the SI, 

Sections S5 and S12 for further detail. 

This area-specific variation highlights the need to use comprehensive, or at least representative, aerial 

surveys when estimating regional emissions. For this reason, Figure 2 uses semi-transparent bars to 

represent methane loss rate estimates from the Permian 2020 and 2021 campaigns, as well as the 

Pennsylvania 2021 campaign, all of which disproportionately focus on high-productivity areas and cover 

less than 80% of natural gas production and less than 50% of well sites in the region in question. For 

simulated well site emissions, we account for the productivity of surveyed well sites, as described in the 

SI, Section S1.4 and S13, but this simply improves the fidelity of simulated emissions within the covered 

region. As a result, our estimates from these less comprehensive campaigns should not be extrapolated to 

the full region (e.g. the entire Permian basin or all of Pennsylvania, respectively). 

In all cases, midstream emissions are a significant fraction of the total. Midstream emissions represent 

45%-57% of total estimated oil and gas emissions in the Permian basin. This falls to 31%-55% in the San 

Joaquin basin and 18% in the Uinta. We estimate midstream emissions at 32-37% of the total in the 

Denver-Julesburg basin, although aerially measured midstream emissions are only 3-10% of the total, 

suggesting that simulated midstream emissions may be an overestimate in this case. See Materials and 

methods for further discussion of simulated midstream emissions, which are derived from the national and 

state-level GHGI reports 9,25. 

Note that campaigns in the same region with comparable well site coverage may cover different amounts 

of midstream infrastructure, which may affect estimated midstream emissions estimates. We do not have 

sufficient midstream asset location data to quantify this effect here. See the SI, Section S12 for coverage 

information for each campaign. 
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Aerial Measurement Often Dominate Total Emissions  

Aerially measured emissions play a major role in nearly all basins, contributing 50-81% of the total in all 

Permian, San Joaquin, Pennsylvania, and Fort Worth campaigns. This rises as high as 84% in the New 

Mexico Permian after accounting for missed emissions in the partial detection range of the aerial system. 

The fraction of aerially measured emissions falls to 41% the Uinta, and 14-20% in the Denver-Julesburg. 

Note that this does not include emissions below the transition point from simulated to aerially measured 

emissions, which excludes some emissions in the partial detection range if simulated emissions are larger. 

This means that the fraction of emissions that is aerially detectable is even greater, as illustrated in the SI, 

Section S3. 

Many new methane-sensing technologies have emerged in the past several years. To assess the fraction of 

total emissions that a technology with a given sensitivity would see in each region, we show the full well 

site-level emissions distribution for all actively producing well sites covered in each of the fifteen 

campaigns in Figure 3. Note that these distributions do not include midstream emissions, as we do not 

have site-level simulated emissions estimates in that case. Each point on these distributions represents a 

well site emission magnitude, on the x-axis, and the fraction of total estimated regional emissions coming 

from well sites emitting at least that amount on the y-axis. 

Despite their substantial contribution to the total in all cases, aerially detected emissions are present at 

only a small fraction of sites at a given time. In the Permian basin, an average of 0.86%-1.44% of total 

well sites are emitting in a given Monte Carlo simulation. This fraction falls to 0.05%-0.09% of sites in 

the San Joaquin, with the remaining regions between the two. Thus, while previous literature focused on 

ground-based measurements found that 5% of measurements often contributed 50% of total emissions 21, 

this study finds that less than 1% of measurements contribute over 50% of total emissions in 12 of 15 

cases. See the SI, Section S2 for further discussion of the shape of the emissions distribution, which 

generally resembles a lognormal for simulated emissions and a power law for aerially measured emissions. 

For Kairos datasets, we use single-blind controlled release test results to correct for missed emissions in 

the partial detection range (teal in Figure 2 and Figure 3). If the probability of detecting an emission of a 

certain magnitude is 1/3 and such an emission is detected, this implies that two emissions of comparable 

magnitude were likely missed by the survey. Thus, we account for this in the cumulative emissions 

distribution by multiplying the contribution of this emission to the total by 3, as described in the SI, Section 

S1.7. Note that due to the required use of wind reanalysis data, the high end of the partial detection range 

for Kairos is larger than observed when using in situ field wind measurements, as in 26. 

The point at which each distribution transitions from simulated to aerially measured emissions is often at 

a higher rate than the smallest aerially measured emission. We set this transition point as the site-level 

emission magnitude beyond which aerially measured emissions are larger than simulated emissions 

(described further in the SI, Sections S1.8 and S3). As a result, some small emissions detected in most 

campaigns are not included in the combined distribution. This is likely because they fall within the partial 

detection range of the system, which can vary depending on the sensitivity of the sensor, flight altitude, 
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automated and manual quality control processes, and local environmental conditions such as wind, sun 

angle, surface reflectance, and vegetation cover. While we correct for missed emissions in the partial 

detection range for Kairos surveys using the method from 13, commensurate single-blind controlled 

release testing data to do so for Carbon Mapper. In addition, Carbon Mapper conducted flights at different 

altitudes across campaigns, as described in the SI, Section S12, affecting the lower detection range. 

The absence of a correction in the partial detection range for Carbon Mapper campaigns, coupled with 

variation in detection capabilities introduced by flight altitude and other above-mentioned factors, likely 

explains the somewhat higher transition points observed compared to Kairos campaigns. In the San 

Joaquin and Pennsylvania distributions, relatively flat areas indicate a gap between the largest simulated 

emissions and the smallest measured emissions, suggesting our estimates of total emissions in these 

regions may be conservative, due in part to missing emissions in this middle size range that exist but were 

not captured by our method. Carbon Mapper personnel believe that the gap in Pennsylvania is partially 

due in part to high vegetative cover. In probability density function form, shown in the SI, Section S2, this 

gap between simulated and measured emissions appears as a local minimum in emission frequency, 

generally ranging between 10 kg/hr and 100 kg/hr, followed by a local maximum for aerially measured 

emissions. It is unclear whether the underlying distribution has a true local minimum in this size range in 

some regions, or whether this is entirely an artifact introduced by sensor minimum capabilities. 

In some cases, aerially detectable emissions significantly exceed the aerially measured portion of the 

combined distribution. The vertical lines in Figure 3 represent the minimum emission detected by each 

aerial technology in each region. In some instances, this is close to the transition point, as in the Kairos 

New Mexico Permian campaign, which has a minimum detected emission of 7 kg/hr and a transition point 

of 19 kg/hr. This indicates that while aerially measured emissions contribute 83% of total emissions, 

Kairos-detectable emissions constitute 88%. The gap is larger for the Denver-Julesburg, where aerially 

measured emissions are 14% of the total and Carbon Mapper-detectable emissions are 45% of the total. 

While some of these detectable emissions may lie in an aerial technology’s partial detection range, this 

illustrates that the distributions in this paper provide a conservative estimate of the fraction of emissions 

these technologies will see when deployed in the field. 

Regions with high emission rates are not necessarily dominated by aerially measured emissions. In the 

Uinta, aerially measured emissions comprise a relatively small fraction of total production site emissions, 

41%, even though the overall methane loss rate is the second highest of all campaigns. In this case, 

production site simulated emissions alone constitute a 3.00% [2.86%, 3.13%] methane fractional loss rate, 

including only emissions below the transition point of 52 kg/hr. A major reason for these large simulated 

emissions in the Uinta basin is the widespread use of emission-prone gas-driven pneumatic controllers, 

shown in more detail in the SI, Sections S1.4.2 and S4. This illustrates the importance of capturing regional 

variability in well site composition when simulating emissions. See the SI, Section S3 for full aerial and 

simulated distributions for each campaign. 
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Code availability 

The data and code required to reproduce the key results of this article, as well as 100,000 random samples 

from each simulated emissions distribution in this study, are available at 

https://github.com/esherwin/MethaneDistributions. 

Data availability 

The remaining Kairos Aerospace data from this study are not available for open release due to 

confidentiality concerns, Kairos Aerospace is committed to working with research groups studying 

methane emissions. 

METHODS 

We estimate the full distribution of the magnitude of methane emissions for 15 large-scale aerial surveys 

of at least 10% of well sites and at least 35% of natural gas production in each of six regions, although the 

Pennsylvania survey covers only 8% of statewide oil production. This includes campaigns by Kairos in 

the New Mexico Permian basin and the Fort Worth basin in Texas (focusing on the Barnett shale), 

alongside campaigns conducted by the Carbon Mapper-led team (including scientists from JPL, the 

University of Arizona, and Arizona State University) in the Permian basin in New Mexico and Texas 

campaigns), California’s San Joaquin basin (5 campaigns), the Denver-Julesburg basin (2 campaigns), as 

well as the Uinta basin and a high-productivity portion of the Appalachian basin in Pennsylvania (1 

campaign each) 10,12,33–35. 

All campaigns use hyperspectral infrared spectroscopy to detect and quantify methane emissions using 

the spectral signature of methane in reflected sunlight. The quantification accuracy and minimum 

detection capabilities of the Kairos technology was independently validated in single-blind controlled 

release testing in 26. See 36 for further detail surrounding the technology. The Carbon Mapper campaigns 

were conducted with the Airborne Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-

NG) spectrometer on a JPL-contract King Air B200 aircraft and an identical very short wavelength 

infrared (VSWIR) imaging spectrometer on the Global Airborne Observatory (GAO) operated by Arizona 

State University, both described in 12. The AVIRIS-NG and GAO systems have also undergone non-

blinded controlled release testing to assess minimum detection limits and quantification accuracy.  

Both teams use data from imaging spectrometers to estimate methane flux rates based on measured 

atmospheric methane enhancements, retrieved from spectral radiances, combined with estimates of 10 m 

wind speeds from reanalysis products. For Kairos Aerospace, we combine reported wind-normalized 

emission rates with HRRR hourly instantaneous wind speed estimates, as in 13. Carbon Mapper uses the 

average HRRR from the nearest nine reported grid values, averaged over the hour before, hour after, and 

hour of a given measurement, as described in 10. 

Kairos flights were conducted at roughly 900 meters above ground level. Carbon Mapper flights range 

from 3,000 meters to 8,500 meters, described in detail in Table 18. 
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Below we describe the steps to construct a complete emissions distribution from a comprehensive aerial 

measurement campaign: 

To produce an aerial measurement-based regional emissions inventory for oil and natural gas production 

and midstream activity, one must first conduct a comprehensive aerial survey of the region in question. In 

this study, we term a survey “comprehensive” if it covers at least 50% of all active oil and natural gas well 

sites and at least 80% of natural gas production in the region in question, generally an oil and natural gas-

producing basin. While future studies may use alternative definitions of “comprehensive”, it is noteworthy 

that measurement campaigns that focus only on high-productivity or low-productivity areas of a region 

can produce misleading estimates of the overall regional methane loss rate, as illustrated in the SI, Section 

S5.  

We first estimate the distribution of measured emissions in each aerially surveyed region as a function of 

emission size, using each emission source as the unit of analysis.  

potential emission source. In midstream, facilities such as compressor stations and gas-processing plants 

are potential emission sources, as are pipelines. For pipelines, each detected emission location is 

considered an emission source. 

In many instances, an emission source was surveyed multiple times, with emissions detected during only 

a fraction of aerial measurements. To account for this, we apply Monte Carlo simulation to characterize 

the emission profile of the surveyed region. We simulate emissions from each emission source with at 

least one detected emission, drawing randomly from all aerial measurements at that location, including 

those with no detected emissions. We then randomly insert simulated error into each quantified emission, 

based on estimates of quantification uncertainty, discussed further in the SI, Section S1.1. We repeat this 

stochastic process for 1000 Monte Carlo realizations to capture uncertainty. This method yields an 

unbiased estimate of total well site emissions in the surveyed region, as described in Chen, Sherwin et al. 

2022 13. By analogous logic, it also yields an unbiased estimate of the size distribution of aerially visible 

emissions, but not the variance of total emissions. See the SI, Section S12.2 for further detail. The resulting 

emissions inventory covers only aerially detected emissions, treating emissions as zero at all sites at which 

emissions were not detected. 

In the Kairos Fort Worth survey, 8.5% of detected emission plumes extended beyond the spectrometer’s 

field of view, and were thus classified as “cutoff” and not quantified. We estimate emission magnitude for 

these emissions by drawing randomly from the distribution of quantified emissions for well sites and 

midstream infrastructure, respectively. The number of emission source measurements is not reported for 

10 of 11 pipeline emissions in the Kairos Fort Worth survey, out of 72 identified emission sources. We 

assume these emissions are fully persistent, setting the number of measurements equal to the number of 

detected emissions at that source. 

For emissions approaching the minimum detection level of an aerial detection system, there may be a 

fractional probability of detection. If an aerial survey of a population of assets detects an emission of a 
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size that corresponds to a known probability of detection of 1/3, that implies that the survey likely missed 

two emissions of similar size. Thus, an aerial survey will tend to underestimate emissions in this partial 

detection range by a predictable amount. 

We correct for this effect in the Kairos surveys in the New Mexico Permian basin and the Fort Worth 

basin, using probability of detection curves based on controlled release testing from. See Materials and 

methods and the SI, Section S1.7 for further detail. 

Carbon Mapper has conducted internal controlled release testing to characterize its minimum detection 

range . However, we do not have sufficient single-blind controlled release data to apply a similar correction 

to Carbon Mapper surveys, many of which were also conducted at varying altitudes, further changing 

lower detection characteristics. This introduces conservatism into estimates of aerially measured 

emissions from Carbon Mapper campaigns. 

We then produce a comprehensive well site-level emissions inventory for the surveyed region, as the basis 

for estimating emissions missed by the aerial survey. We simulate emissions at all surveyed well sites 

using a basin-scale emissions simulation tool, introduced in. The bottom-up emissions simulation begins 

with field measurements of the prevalence and magnitude of emissions at the component level, e.g. valves, 

flanges, and open-ended lines. It then converts these into probabilistic equipment-level emission factors 

based on component counts for different types of equipment, e.g. separators, meters, and wellheads. 

We update this simulation tool with basin-specific equipment activity data from the EPA’s Greenhouse 

Gas Reporting Program, e.g. the number of wellheads and pneumatic controllers per site in a given 

productivity range, as well as production data, to probabilistically estimate emissions at each well site in 

a given basin. This analysis thus estimates well site-level emission rates for all surveyed active oil and gas 

well sites in the six basins. 

Simulated well site emissions are based on component-level measurements of methane emission 

frequency and magnitude, combined with counts of the number of each relevant component (e.g. valves, 

connectors, and open-ended lines) per piece of well site equipment (as listed in the previous paragraph). 

Eqs. (1) and (2) summarize the underlying mathematics behind this probabilistic emissions estimation 

method for a given basin, described in detail in the SI, Section S1.4 and 5. 

Where Qi is simulated emissions for a given simulated well, i, and Qbasin is methane emissions from all 

well sites across the oil and gas-producting basin in question. The i index iterates across all wells in the 

basin, totalling nwells. The j index iterates across equipment types, with a total of nequip types. Qi,j is a 

randomly-generated equipment-level emission factor for equipment type j at well i, drawing upon 

empirical measurements of component counts per piece of equipment, the fraction of components emitting 

at a given time, and component-level emission rates per emission, described further in the Rutherford et 

al. 2021 and in the SI, Section S1.4 5. is an equipment activity factor (equipment count per well), drawn 

from EPA GHGRP data for the basin containing the simulated region. Finally, wells are translated into 
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well sites using the spatial clustering algorithm introduced in 6. The result is a distribution of well site-

level emissions based on the Qi values. 

We identify the number of wells surveyed in a given campaign by filtering the Enverus coordinates of all 

active wells in the relevant basin by each aerial survey area 38. Enverus does not divide wells into well 

sites. We convert this count of wells to a count of well sites, assuming the average number of wells per 

site for the basin, derived from the basin-specific emissions simulation model results, which using the 

well-to-site clustering algorithm introduced in 6. See the SI, Section S1.6 for further detail. 

To account for differences in well site productivity between the surveyed area and the basin as a whole, 

for each campaigns we draw simulated emissions for each surveyed well site from a well site with similar 

natural gas productivity. This ensures that simulated emissions are representative of the surveyed area, but 

does not guarantee that the overall emissions estimate from the surveyed area will be representative of the 

basin as a whole. See the SI, Sections S13, S1.5, S5 for further detail. The result is simulated emission 

levels for all well sites covered by each aerial survey. 

 

Sector (MMt/yr) 2016 2017 2018 2019 2020 

Gathering & Boosting 1.46 1.53 1.55 1.6 1.5 

Processing 0.45 0.46 0.48 0.51 0.49 

Transmission & Storage 1.53 1.46 1.54 1.58 1.63 

 3.44 3.45 3.57 3.68 3.62 

 3.67 3.71 3.66 3.64 3.47 

 7.11 7.16 7.23 7.32 7.09 

 581 600 672 735 730 

 1.2 1.2 1.1 1.0 1.0 

      

 [1.0, [1.0, [0.9, [0.8, [0.8, 

 1.5] 1.4] 1.3] 1.2] 1.2] 

NG Total (from exploration to post-meter) 6.61 6.66 6.87 6.89 6.6 

Oil Total (from exploration to post-meter) 1.62 1.62 1.54 1.62 1.61 

Oil & NG Total 8.23 8.28 8.42 8.5 8.21 

 1.3 1.2 1.1 1.0 1.0 

      

 [1.0, [1.0, [0.9, [0.8, [0.8, 

 1.5] 1.5] 1.3] 1.3] 1.2] 
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We do not have a site-level emissions simulation tool for midstream infrastructure, comparable to the 

above well site emissions simulation method. We rely on national and state-level Greenhouse Gas 

Inventory (GHGI) estimates from the United States Environmental Protection Agency (EPA), which 

includes reported annual values from 2016 through 2020 9,25. These estimates are based on similar 

emissions simulation methods. 

EPA’s national inventory includes itemized national emissions from petroleum and natural gas systems. 

We consider midstream emissions to include EPA’s categories of Gathering and Boosting, Processing, and 

Transmission and Storage.  

National methane emissions from oil and natural gas by sector in the United States from the 2022 EPA 

Greenhouse Gas Inventory in millions of metric tons of methane per year 29. Includes national onshore 

methane production from onshore oil and natural gas activity from Enverus 38. National methane 

fractional loss rate estimates include ±18% error for natural gas system emissions and +32%/-28% error 

for petroleum systems, derived from reported uncertainty in 2020 29. 

The GHGI also produces state-level emissions inventories 25. These include estimates of total methane 

production from natural gas systems and petroleum systems, without itemizing midstream and production 

emissions. For each state, we compute the methane fractional loss rate from natural gas systems by 

dividing by the state-level GHGI estimate by statewide production from Enverus in the corresponding 

year, again assuming a 90% methane fraction 6,38. 

We then estimate the methane fractional loss rate from midstream infrastructure in each state by assuming 

that midstream emissions represent the same fraction of total emissions in each state as they do nationally, 

42-44% from 2016-2020 6,29. To ensure a conservative estimate, if this value is larger than the national 

midstream methane fractional loss rate, we use the national rate instead. See for estimated natural gas 

system and midstream fractional loss rates for each state covered in this study. All cases except the CM 

Permian campaigns cover only one state. In the CM Permian campaigns, we use the midstream methane 

fractional loss rate from Texas, as this constitutes most assets surveyed. See 2 for a mapping between each 

campaign and the state used to estimate the midstream methane fractional loss rate. 

Statewide methane emissions from oil and natural gas systems for each campaign from the EPA state-level 

greenhouse gas inventory. Combined with state-level onshore natural gas production from 
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Figure 1  

A) Surveyed well sites. Remaining active US oil and gas wells in black. B) All aerially detected emissions 

from well sites (blue) and midstream infrastructure (red). Inset black text denotes total count of well site 

visits (measurements) for each region, alongside counts of the number of emissions detected from well 

sites and midstream infrastructure. C) Site-level emission estimation workflow. If emissions are detected 

during an aerial measurement at a well site, which may contain multiple wells and other equipment, or a 

midstream asset, that emissions estimate is used directly, after accounting for measurement uncertainty 

and partial detection probability. If no emission is detected at a well site, we estimate emissions using an 

emissions simulation tool derived from 5. For midstream assets, we use GHGI simulations to estimate 

aggregate regional midstream emissions below the aerial detection limit. We also use simulated emissions 

if an aerially measured emission is below the emission size at which simulated emissions dominate. To 

characterize uncertainty in total emissions in the surveyed region, we repeat this stochastic process 1000 

times for each of the surveyed sites via Monte Carlo analysis, randomly drawing from all aerial 

measurements at each site with and, for well sites, without aerially detected emissions. Note that Fort 

Worth data are not shown in A) and B) to preserve anonymization 

 

Figure 2 
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Estimated methane loss as a fraction of methane production from oil and natural gas well sites and 

midstream assets (e.g. pipelines and compressor stations) for all Kairos Aerospace (Kairos) and Carbon 

Mapper (CM) campaigns in this study in the Permian, San Joaquin, Denver-Julesburg (DJ), Pennsylvania 

(PA), Uinta (U), and Fort Worth (FW) regions. Colors represent aerially measured emissions (red), implied 

aerially detectable emissions in the partial detection range (teal, Kairos only), and estimated emissions 

from component-level simulation (black). Hatched bars represent midstream assets. Dotted lines are 

corresponding estimates from the Environmental Protection Agency’s state-level Greenhouse Gas 

Inventories, which form the basis for simulated midstream emissions estimates, with the 2020 national 

estimate for production and midstream displayed in full on the right 9,25. The Kairos Permian campaign 

covers only the New Mexico Permian, while Carbon Mapper extends into Texas. While most campaigns 

cover over 80% of total gas production and at least 50% of regional well sites, semi-transparent bars focus 

disproportionately on high-production areas, which may not have the same emissions profile as the region 

as a whole. Error bars represent a 95% probability interval, including multiple forms of uncertainty, 

described in the SI, Section S1.2
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Figure 3
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Cumulative well site methane emissions by region. The fraction of total emissions represented by well 

sites emitting at least a given amount of methane. Red represents direct measurements from aerial 

campaigns by Kairos Aerospace (Kairos) and Carbon Mapper (CM), with the total number of well sites 

surveyed listed for each campaign in the legend and fraction of sites with aerially detected emissions inset. 

Black represents simulated emissions at surveyed well sites with relatively low emissions. For Kairos 

campaigns, aerial emissions estimates include a correction for partial detection (teal) for smaller emissions 

based on single-blind controlled methane release testing. A similar correction for Carbon Mapper is not 

possible as commensurate blinded and peer-reviewed test data are not yet available Vertical lines represent 

the minimum detected emission for each technology in a given region. The transition point away from 

simulated emissions represents the size beyond which aerially detected emissions consistently dominate 

simulated emissions. 

 

REFERENCES  

1. Saunois, M. et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 

(2020). 

2. Friedlingstein, P. et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020). 

  

3. EPA. Greenhouse Gas Emissions: Understanding Global Warming Potentials. 

https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (2017). 

4. US EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017. 

https://www.epa.gov/sites/production/files/2019-04/documents/us-ghg-inventory-2019-main- 

text.pdf (2019). 

5. Rutherford, J. S. et al. Closing the methane gap in US oil and natural gas production emissions 

inventories. Nat Commun 12, 4715 (2021). 

6. Alvarez, R. A. et al. Assessment of methane emissions from the U.S. oil and gas supply 

chain.Science eaar7204 (2018) doi:10.1126/science.aar7204. 

7. Brandt, A. R. et al. Methane Leaks from North American Natural Gas Systems. Science 343, 733–

735 (2014). 

8. Carras, J. N. et al. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Chapter 4 - 

Fugitive Emissions. https://www.ipcc- 

nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf (2006). 

9. EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020. U.S. Environmental 

Protection Agency. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-

and- sinks-1990-2020 (2022). 

10. Duren, R. M. et al. California’s methane super-emitters. Nature 575, 180–184 (2019). 

11. Irakulis-Loitxate, I. et al. Satellite-based survey of extreme methane emissions in the Permian 

basin.Sci. Adv. 7, eabf4507 (2021). 



 
 

International Journal of Energy and Environmental Research, 12 (1), 1-18, 2024 

Print ISSN -2055-0197(Print), 

Online ISSN 2055-0200(Online) 

https://www.eajournals.org/ 

                                    Publication of the European Centre for Research Training and Development -UK 

18 
 

12. Cusworth, D. H. et al. Intermittency of Large Methane Emitters in the Permian Basin. Environ. 

Sci. Technol. Lett. 8, 567–573 (2021). 

13. Chen, Y. et al. Quantifying Regional Methane Emissions in the New Mexico Permian Basin with 

a Comprehensive Aerial Survey. Environ. Sci. Technol. 56, 4317–4323 (2022). 

14. Cusworth, D. H. et al. Strong methane point sources contribute a disproportionate fraction of total 

emissions across multiple basins in the United States. Proc. Natl. Acad. Sci. U.S.A. 119, 

e2202338119 (2022). 

15. Frankenberg, C. et al. Airborne methane remote measurements reveal heavy-tail flux distribution 

in Four Corners region. Proc Natl Acad Sci USA 113, 9734–9739 (2016). 

16. Varon, D. J. et al. Satellite Discovery of Anomalously Large Methane Point Sources From Oil/Gas 

Production. Geophys. Res. Lett. 46, 13507–13516 (2019). 

17. Varon, D. J. et al. High-frequency monitoring of anomalous methane point sources with 

multispectral Sentinel-2 satellite observations. Atmos. Meas. Tech. 14, 2771–2785 (2021). 

18. Lauvaux, T. et al. Global Assessment of Oil and Gas Methane Ultra-Emitters. Science 375, 557–

561 (2022). 

19. Zavala-Araiza, D. et al. Super-emitters in natural gas infrastructure are caused by abnormal process 

conditions. Nat Commun 8, 14012 (2017). 

 


