Ethanolysis of Cao-Base Derived from Seashell for Conversion of Waste Used Oil for Biodiesel Production (Published)
The physicochemical properties of the waste used oil (WUO) were carried out for biodiesel production. The heterogenous catalyst (CAO based) used in this work was derived from waste seashell. The produced biodiesel was characterized and the optimum biodiesel produced was determined through statistical analysis. This was with a view to add value to the WUO and finding the solution to reduction of the excess carbon release to the environment. According to the results obtained, it showed that the refined WUO properties were in line with oil property requirement for biodiesel production. The physicochemical characteristics of the WUO showed physical state of the oil to be liquid/dark brownish at 28 oC, viscosity 6.58 cP at 28 oC, acid value, 0.96 (mg KOH/g oil), FFA (% oleic acid), 0.48, iodine value, 152.00 (g I2/100g oil), peroxide value, 5.1 milli-equivalent of peroxide/kg of oil among others. The derived catalyst showed high basic strength with potassium oxide (61.63 wt.%) as the dominant element in the catalyst. Optimum biodiesel yield was obtained at run 5 with 98.52 (%wt./wt.) at reaction time of 65 min, catalyst amount of 4.0 (%wt.), reaction temperature of 70 oC, and ethanol-oil molar ratio of 7:1. The produced biodiesel properties was compared with the recommended standard ASTM D6751 and EN 14214.
Keywords: Biodiesel, Oil Kernel, Renewable Energy, Waste Seashell, characterization of biodiesel, waste used oil
Biodiesel Synthesis from the Waste Biomass (Published)
In this work, physicochemical properties of the waste used oil (WUO) were carried out for its aptness for biodiesel production. Burnt Animal Bone was used as a precursor for the biodiesel production. The produced biodiesel was characterized and the optimum biodiesel produced was determined via statistical analysis. This was with a view to add value to WUO and finding environmentally friendly alternative to fossil fuel. WUO was obtained from eatery in Yenegoa, Bayelsa State, Nigeria. The foreign materials and dirt in the oil was removed by filtration after preheating. The physiochemical and other parameters (cetane number, API, aniline point among others) properties of WUO were determined using standard methods. The BAB was burnt to ash in a furnace, sieved into fine powder, and then characterized using FTIR, SEM, XRF, BET adsorption, and qualitative analysis. Biodiesel production was done via base catalyst transesterification while statistical analysis was done using Microsoft Excel 8.0. In order to ascertain the quality of the biodiesel, the physicochemical properties were determined. Results showed that the refined WUO properties were in line with oil property requirement for biodiesel production. The physicochemical characteristics of the WUO showed physical state of the oil to be liquid/dark brownish at 28 oC, viscosity 6.58 cP at 28 oC, acid value, 0.96 (mg KOH/g oil), FFA (% oleic acid), 0.48, iodine value, 152.00 (g I2/100g oil), peroxide value, 5.1 milli-equivalent of peroxide/kg of oil among others. The derived catalyst showed high basic strength with Calcium oxide (87.63 wt. %) as the dominant element in the catalyst. Optimum biodiesel yield was obtained at run 5 with 98.52 (%wt. /wt.) at reaction time of 30 min, catalyst amount of 2.0 (%wt.), reaction temperature of 100 oC, and ethanol-oil molar ratio of 4:1. The produced biodiesel properties conformed to the recommended standard ASTM D6751 and EN 14214. The study concluded that WUO could serve as feedstock for biodiesel production that is environmentally friendly and the derived catalyst could be used as a bio-base in Industries.
Keywords: Biodiesel, Biomass, burnt animal bone, characterization of biodiesel, palm kernel oil, transesterification, vegetable oil and animal fats., waste used oil
Comparative Assessment of Biodiesel Produced from Microalgae, Used Vegetable Oil and Fossils (Published)
Biodiesel was produced from two sources; microalgae oil and used vegetable oil and compared with conventional fossil diesel. The microalgae were collected from an open pond where they constitute nuisance while the used vegetable oil was gotten from roadside fried food sellers as waste products. Trans-esterification was carried out to give the corresponding mono alkyl ester (biodiesel). Quality assessment of the biodiesel produced was carried out via determination of chemical characteristics; Density, viscosity, flash point, pour point and acid value. The density of the biodiesel from the two sources were 0.882 kg. L-1 and 0.870 kg. L-1 respectively and higher than the conventional diesel. Flash points of the biodiesel produced from microalgae (1650C) and used vegetable oil (1810C) were significantly higher than the conventional diesel. Pour points of the biodiesel produced from microalgae oil and used vegetable oil were -100C and -150C respectively while viscosity values at 350C were 5.2 and 4.5 respectively. The acid value of the biodiesel produced from the microalgae oil (0.394) and the used vegetable oil (0.290) were lower than that of the conventional diesel fuel (0.5). The chemical characteristics of the biodiesel produced were in line with standard specifications. The biodiesel produced when compared with the conventional diesel fuel based on their different parameters may be fit and greener replacement for fossil diesel fuels, which are nonrenewable and not biodegradable.
Keywords: Biodiesel, Microalgae, Renewable Energy, Waste Management, used vegetable oil
Feasibility Study of Algae Biodiesel Production in the Cambois Peninsular (UK) (Published)
The main aim of this project was to undertake a feasibility study of microalgae biodiesel production from the Cambois peninsular, Northumberland England. This particular project site was chosen for its potential to support microalgae growth i.e. close proximity to both water and CO2 source. Microalgae chlorella specie was chosen for this analysis because of its good productivity (22g m-2 day-1) as well as high lipid content (50% dry weight). The analysis considers 150 days farm production (March to August) due to low temperature in the winter. A comparative analysis of foam column microalgae harvesting process followed by oil extraction through in-situ transesterification was undertaking against the conventional centrifugation-harvesting route followed by conventional tranesterification. Lastly a hybrid of the 2 processes of centrifugation followed by in-situ transesterification was also analysed side by side.
The 3 different biodiesel processing routes were examined based on final biodiesel yield, cost and energy consumption. The centrifugation route provides high biodiesel yield of 115 L ha-1 day-1 but with associated high energy and centrifuge installation cost. Foam column separation yield 110 L ha-1 day-1 with optimum power consumption and installation cost. The hybrid system yield 100 L ha-1 day-1 with minimum power consumption but may suffer set back due to high cost of centrifuge cost and maintenance. The best-case scenario of foam column separation process was further evaluated to validate its economic potential for large-scale biodiesel production as against the current price of fossil diesel. The outcome confirms the potential of microalgae biodiesel to be cost competitive with diesel if the harvesting process is substituted with the foam column separation technique, while the traditional oil transesterification be substituted with the in-situ transesterification technique.
Keywords: Biodiesel, Foam-column separation, Insitu-transesterification, Microalgae