Evaluation of Biogas Production from the Digestion and Co-Digestion of Animal Waste, Food Waste and Fruit Waste (Published)
The increased use of fossil fuels for energy consumption has causes environmental problems both locally and globally. The study investigates the anaerobic digestion in the production of biogas a renewable energy from the digestion and co-digestion of three different types of biodegradable wastes (cow dung, fruit waste and food waste) as an alternative for fossil fuels for energy consumption. This was carried out using a 25 Litres capacity plastic keg prototype biogas plant, constructed to investigate the anaerobic digestion in generating biogas. The experiment was batch operated and daily gas yield from the plant was monitored for 30 days. The slurry temperature and pH were also monitored and presented. The digester was charged with these wastes in the ratio of 1:1, of waste to water respectively. The mesophilic temperatures range attained within the testing period were 25 – 28.4 and a slurry temperature range of 24.4 -28.4. The result obtained from the biogas production showed that the co-digestion of cow dung and food waste produced the highest biogas of 164.8%, followed by the co-digestion of the three waste (cow dung, fruit waste and food waste) which has a percentage of 91.0%, co-digestion of cow dung and fruit waste (83.9%), cow dung of 79.8%, food waste of 77.4% and fruit waste of 76.4% within this retention period. During the digestion period, the volume of biogas production and the changes in pH indicate that the pH decreases as the retention period increases. These results showed that co-digestion wastes produce more biogas than when the wastes are ordinarily used for biogas production. The study recommends that biogas is not just a renewable energy source but also an appropriate way of managing waste, having potential to replace fossil fuel.
Keywords: Anaerobic Digestion, Biodegradable Wastes, Biogas, Fossil Fuel, Renewable Energy
Integrated System for Simultaneous Removal of Nitrogen and Phosphorus by Ulva Lactuca and Its Subsequent Utilization for Biogas Production (Published)
Biogas is a combustible mixture of gases produced by microorganisms when livestock manure and other biological wastes are allowed to ferment in the absence of air in closed containers or reactor. This process design proposes an integrated biogas production system that aims to remove nitrogen and phosphorus from polluted seawater using U. lactuca and consequently utilize this as a feedstock for biogas production. Anaerobic digestion is done in the process which accomplished in three stages: (1) hydrolysis of insoluble polymers, (2) fermentation of monomeric breakdown products and (3) fermentation of acetate and hydrogen from volatile fatty acids and (4) generation of methane. The basis of the design is 1,000 metric tons of purified biogas per year which is intended for kitchen stove application. It can promote utilization of endemic U. lactuca for seawater treatment and at the same time provide livelihood to communities and save the aquatic environment from pollution. In addition, utilizing purified biogas as an additional source of fuel can save the dwindling natural gas and oil reserves in the world. This purified biogas can be an alternative to the conventional LPG (liquefied petroleum gas) used for kitchen stoves since their energy value and price are comparable.
Keywords: Anaerobic Digestion, Biogas, Microalgae, Philippines, U. Lactuca
Evaluation of Biogas Production from the Digestion and Co-Digestion of Animal Waste, Food Waste and Fruit Waste (Published)
The increased use of fossil fuels for energy consumption has causes environmental problems both locally and globally. The study investigates the anaerobic digestion in the production of biogas a renewable energy from the digestion and co-digestion of three different types of biodegradable wastes (cow dung, fruit waste and food waste) as an alternative for fossil fuels for energy consumption. This was carried out using a 25 Litres capacity plastic keg prototype biogas plant, constructed to investigate the anaerobic digestion in generating biogas. The experiment was batch operated and daily gas yield from the plant was monitored for 30 days. The slurry temperature and pH were also monitored and presented. The digester was charged with these wastes in the ratio of 1:1, of waste to water respectively. The mesophilic temperatures range attained within the testing period were 25 – 28.4 and a slurry temperature range of 24.4 -28.4 . The result obtained from the biogas production showed that the co-digestion of cow dung and food waste produced the highest biogas of 164.8%, followed by the co-digestion of the three waste (cow dung, fruit waste and food waste) which has a percentage of 91.0%, co-digestion of cow dung and fruit waste (83.9%), cow dung of 79.8%, food waste of 77.4% and fruit waste of 76.4% within this retention period. During the digestion period, the volume of biogas production and the changes in pH indicate that the pH decreases as the retention period increases. These results showed that co-digestion wastes produce more biogas than when the wastes are ordinarily used for biogas production. The study recommends that biogas is not just a renewable energy source but also an appropriate way of managing waste, having potential to replace fossil fuel.
Keywords: Anaerobic Digestion, Biodegradable Wastes, Biogas, Fossil Fuel, Renewable Energy