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Abstract: Contemporary port activities and operations have taken the form of sophisticated,
mechanized systems such as cranes, conveyors, dry docks, and transport vehicles to maintain the
efficiency of global trade. Nevertheless, the failure of any piece of equipment might lead to extensive
downtime, logistical, and financial losses. Predictive maintenance (PdM), a process that uses data
analysis tools and techniques to detect anomalies and predict equipment failures, is driven by Artificial
Intelligence (Al) and advanced sensor analytics, and is transforming the way ports operate their critical
assets. These Al models can predict when a component will fail and suggest prompt maintenance
measures by continuously analyzing sensor data, including vibration, temperature, load, and hydraulic
pressure. By adopting this proactive approach, unwanted downtime is reduced, equipment life is
increased, and maintenance spending is optimized. The Internet of Things (loT), which refers to the
network of interconnected devices that communicate sensor data, and machine learning, combined with
big data analytics, enable real-time updates on the condition of cranes, conveyors, and other port
equipment. In this article, the author discusses the principles, architecture, and implementation of
predictive maintenance for port equipment, the advantages of Al-based diagnostics, and the strategic
roles of digital twins, virtual replicas of physical assets, and edge computing, which processes data
near the source of generation. By presenting case studies and future viewpoints, the study reveals how
predictive maintenance aligns with the goals of sustainable port operations, resource efficiency, and
Industry 4.0. The results indicate predictive maintenance represents not just a technological
enhancement but a fundamental shift toward data-driven decision-making and operational robustness
across maritime logistics globally.

Keywords: predictive maintenance, port equipment, artificial intelligence, 10T sensors, operational
efficiency

INTRODUCTION

Maritime trade remains the backbone of international trade: more than 80 percent of global trade volume
is carried by sea, and contemporary container ports are the key connections in intricate, time-sensitive
logistics networks (Martinez-Moya et al., 2019). The availability of and the performance of heavy
handling assets (ship-to-shore (STS) cranes, rubber-tyred gantry (RTG) cranes, different types of gantry
systems, conveyors, dry-dock handling systems, yard tractors and terminal trucks) directly affect port
throughput, as failures in any of these areas have ripple effects on the vessel schedules, hinterland
connections, and supply-chain contracts (Gan, 2021; Martinez-Moya et al., 2019). Unexpected
blockages at one berth can reduce terminal throughput, prolong vessel turnaround time, and create

97


https://www.eajournals.org/

International Journal of Engineering and Advanced Technology Studies 13 (3), 97-113, 2025
Print ISSN: 2053-5783(Print)
Online ISSN: 2053-5791(online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

cascading costs through demurrage, labour, and modal transfers; hence, terminal equipment reliability
is an operational and strategic concern.

Traditional paradigms of maintenance.

In the past, ports relied on reactive (breakdown-driven) approaches and calendar-based preventive
maintenance (inspections of parts at specific intervals, replacement of parts after certain intervals).
Reactive maintenance is cheap in the short term when failure rates are low, but it subjects operators to
highly unpredictable downtime and emergency maintenance costs. Preventive maintenance eliminates
some surprises, but it is also illogical: replacement periods have to be conservative to prevent failures,
which leads to redundant part changes, labor costs, and lost uptime (Zonta et al., 2020). Besides, both
paradigms are characterized by inspection regimes dependent on human beings and an insufficient
understanding of the fundamental degradation mechanisms of electromechanical, hydraulic, and
electrical systems that port equipment is usually subject to (Es-sakali et al., 2022; Cofta et al., 2021).
Such limits generate a powerful motivation to go beyond time-based heuristics into condition-conscious
strategies.

The emergence of predictive maintenance (PdM)

Predictive maintenance (PdM) refers to data-driven decision rules that predict the timing and mode of
an imminent failure to plan maintenance activities and reduce costs and operational impacts. PdM is
now scalable due to the transition to Industry 4.0, which involves pervasive sensing, edge/cloud
computing, and scalable machine learning, thereby achieving practicality (Achouch et al., 2022). Some
of the enabling technologies are heterogeneous loT sensors (vibration, acoustics, current/voltage, strain,
temperature, humidity, GPS/telemetry), high-frequency telemetry pipelines, edge preprocessing of
latency-sensitive inferences, multi-physics simulation with digital twins, and AI/ML models (classical
statistical prognostics and health management (PHM) to deep learning architectures) to remain useful
life (RUL) estimation and anomaly detection (Esteban et al., 2022; Zhong et al., 202 These devices can
be used in ports to monitor the conditions of crane hoist and trolley drives, RTG hydraulic drives,
electrical drives, conveyor belt tension, and motor currents, as well as service-vehicle
engine/transmission behaviour, not reactively to failures, but according to pre-determined impact
windows.

Problem statement

Although a proven technical potential remains evident, various port authorities and terminal operators
still face operational inefficiencies caused by unexpected equipment failures and fragmented asset
information. Two problems that are closely connected continue to exist: (1) heterogeneity of assets and
vendor systems: the result of which is siloed data formats, different sensor quality, and disproportional
telemetry coverage across cranes, conveyors, dry docks and vehicles; and (2) a lack of integrated PdM
frameworks that consolidate data ingestion, uncertainty quantification, model selection and
maintenance decision support that are suitable to port operational constraints (Cofta et al., 2021; Zonta
et al., 2020). In the absence of sound, interoperable PdM architectures, predictive signal values are
either not used or viewed with low confidence by maintenance planners, which leads to poor ROI and
delays.
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Research aim and objectives

Purpose: To explore how Al-based sensor data analysis can accurately predict equipment performance
issues. The goal is to optimize maintenance planning in ports at an affordable cost while considering
environmental impact.

Objectives:

o Determine the most significant operational and condition parameters (i.e., vibration spectra,
motor current harmonics, hydraulic pressure transients, temperature gradients, duty cycles) that
have a significant impact on port equipment performance. (Cofta et al., 2021; Sehrawat & Gill,
2019).

o Comparing a range of Al / ML solutions in failure prediction and RUL estimation (e.g., classical
prognostics, supervised learning, time-series deep learning (LSTM / Transformer variants), and
hybrid physics-informed models) and their evaluation of trade-offs in data requirements,
interpretability, and computational cost (Achouch et al., 2022; Esteban et al., 2022).

e Suggest a modular, hierarchical PdM architecture of ports that encompasses multi-vendor
telemetry, edge processing, uncertainty-informed inference, decision criteria based on
operational KPIs, and human-in-the-loop validation loops. (Zhong et al., 2023).

Research questions

What is the potential of Al and multisensor data to work together and predict mechanical, hydraulic,
and electrical faults in port handling equipment with enough lead time to allow planned interventions
to occur? (Esteban et al., 2022).

Which sensor modalities and algorithmic families can provide the highest predictive accuracy of certain
asset classes (STS cranes vs RTGs vs conveyors vs terminal vehicles), and what is the lowest data
pipeline that can be deployed? (Cofta et al., 2021; Sehrawat & Gill, 2019).

What are the operational, organisational and technical issues, such as the data quality, the cyber-
security, the cost of integration, the trust of the workforce that we will have to resolve in order to scale
the adoption of PdM into the heterogeneous port estates and what are the quantifiable benefits (reduced
downtime, lower costs in the lifecycle, decreased emissions) can operators reasonably expect? The
majority of economists consider that this factor will persistently influence the operation of the market
economy. Most economists believe that this aspect will continue to shape the way the market economy
works.

LITERATURE REVIEW
The History of Predictive Maintenance in Industry.

Predictive maintenance (PdM) has evolved from primitive condition-based monitoring (CBM) into
complex, Al-based systems that leverage continuous sensing, advanced analytics, and automated
decision-making. Early CBM was based on periodic inspections and threshold activations from single-
parameter readings; with the introduction of Industry 4.0, PdM has evolved to continuous monitoring
of multi-parameter readings and model-based prognosis (Zonta et al., 2020; Achouch et al., 2022). The
experience in other industries demonstrates a definite trend: the aviation and rail industries have
introduced a high level of condition monitoring and strict maintenance schedules, since here the
requirements are safety critical, and manufacturing provided scalable sensor-to-cloud architecture and

99


https://www.eajournals.org/

International Journal of Engineering and Advanced Technology Studies 13 (3), 97-113, 2025
Print ISSN: 2053-5783(Print)
Online ISSN: 2053-5791(online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

data-fusion approaches (Zonta et al., 2020; Esteban, Zafra & Ventura, 2022). These industries provide
valuable insights into the future of the port industry: the usefulness of careful failure-mode studies, the
importance of standardization of signal-processing pipelines, and the practical tasks that can be
performed by embedding PdM findings in process management to ensure minimal unexpected
downtimes and longevity of the equipment (Achouch et al., 2022; Martinez-Moya et al., 2019).
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Figure 1. On Predictive Maintenance in Industry
Predictive Maintenance in Maritime and Port Operations.

PdM studies in the maritime environment are young and developing. Experiments have also used PdM
to ship, propulsion, and auxiliary machine motors with encouraging results in reducing in-service
failures by combining vibration, temperature, and oil-analysis sensors with machine-learning classifiers
(Es-sakali et al., 2022; Esteban, Zafra & Ventura, 2022). Port usage, especially of container cranes,
straddle carriers, conveyors, and terminal vehicles, imposes unique operational constraints (heavy
loads, outdoor use, mixed vendor fleets) that complicate the transfer of generic PdAM models. In recent
papers, it is identified that digital twins are promising to simulate the behavior of complex port
equipment at realistic operation profiles, as well as to provide a host of hybrid physics-data models that
enhance remaining useful life (RUL) predictions (Zhong et al., 2023; Densberger and Bachkar, 2022).
The empirical case studies of ports that implemented the use of electrification and zero-emission
handling technologies also highlight how the modernization of assets would result in creating more
promising streams of telemetry as well as the emergence of new maintenance requirements, which
would also require the adoption of PdM strategies specific to the operation of electrified cranes and
energy storage systems (Densberger & Bachkar, 2022; Gan, 2021).

Sensor Technologies in Port Equipment

Port PdM is based on a non-homogeneous group of sensing modalities. Vibration and accelerometry
remain the primary means of monitoring rotating and mechanical subsystems (bearings, gearboxes),
whereas temperature sensors and thermography are used to detect overheating and electrical faults.
Measurements that help detect early cracks and structural anomalies include acoustic emission and
strain sensors; sensors that monitor fluid systems include pressure and hydraulic flow sensors, as well
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as oil quality sensors that measure chemical indicators of wear (Sehrawat and Gill, 2019; Cofta,
Karatzas, and Orlowski, 2021). It has been suggested that building information models (BIM) and
environmental monitoring be integrated, particularly in indoor terminals and warehouses, to provide
context for equipment well-being in relation to ambient conditions (Desogus et al., 2021). Real-world
port deployments need to consider the issue of data acquisition: the distributed edge collectors, local
data fusion, and time synchronization need to be implemented to minimise the latency and bandwidth,
but still maintain high-frequency signals needed to support bearing/fault detection (Krishnamurthi et
al., 2020; Cofta et al., 2021). The literature emphasizes the significance of sensor selection in relation
to failure modes and the trade-off between sensor density and the cost-benefit of actionable insights
(Sehrawat and Gill, 2019; Achouch et al., 2022).

Al and Machine Learning Techniques.

The range of considered machine learning (ML) methods is wide for PdM. Supervised classifiers, such
as random forests, gradient boosting machines, and support vector machines, are commonly used for
fault classification when labeled failure data are available (Esteban, Zafra & Ventura, 2022).
Feedforward and convolutional neural networks have been useful in automated feature learning on
spectral and time-domain representations (Esteban et al., 2022; Achouch et al., 2022). Recurrent and
sequence models, including LSTM and hybrid CNN-LSTM networks, are better than others at temporal
modeling, particularly when long-range dependencies are critical (Zhong et al., 2023). Unsupervised
and semi-supervised algorithms (clustering (K-means, DBSCAN) and anomaly detection) are essential
when there are few labeled faults; they identify distributional changes that can be indicative of
impending faults (Esteban et al., 2022; Krishnamurthi et al., 2020). Ensemble techniques and model-
soup techniques (averaging across models) have also been reported to increase robustness, as
documented in the literature (Ainsworth et al.; Mitigation literature cited). Notably, the hybrid physics-
informed ML (digital twin + data-driven) approach appears particularly promising for port equipment,
where known domain constraints are integrated with learned patterns to address data sparsity (Zhong et
al., 2023).

Technique / Model Type

Application in PdM

Key References

Supervised Learning
(Random Forests, Gradient
Boosting, SVM)

Fault classification and condition
prediction when labeled historical failure
data are available.

Esteban, Zafra &
Ventura (2022)

Feedforward and
Convolutional Neural
Networks (CNNs)

Automated feature learning on vibration
spectra, acoustic signals, and time-
domain data for early fault detection.

Esteban et al. (2022);
Achouch et al. (2022)

Recurrent Neural Networks
(LSTM, CNN-LSTM hybrids)

Modeling temporal dependencies and
sequence dynamics in continuous sensor
data streams.

Zhong et al. (2023)

Unsupervised / Semi-
supervised Learning (K-
means, DBSCAN, Anomaly
Detection)

Detection of abnormal operational
patterns or distributional shifts in
systems with scarce labeled failure data.

Esteban et al. (2022);
Krishnamurthi et al.
(2020)
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Ensemble and Model-Soup Combine multiple models to improve Ainsworth et al.

Approaches robustness, reduce variance, and (2022); Wortsman et
enhance generalization under varying al. (2022)
conditions.

Hybrid Physics-Informed ML | Integrates physical system constraints Zhong et al. (2023)
(Digital Twin + Data-Driven) | with learned models to improve
predictive accuracy and interpretability
in port equipment.

Table 1- Al and Machine Learning Technigues for Predictive Maintenance
Predictive Modeling Structures

Best PdM systems have an end-to-end pipeline: sensor signal conditioning, feature extraction (time,
frequency, and statistical features), feature engineering and selection, model training/validation, and
deployment with feedback into the maintenance management systems (CMMS) (Esteban et al., 2022;
Achouch et al., 2022). It is reiterated that data preprocessing, including handling missing values,
normalization, denoising, and label balancing, is key to model reliability (Cofta et al., 2021; Esteban et
al., 2022). It is evaluated using metrics for classification and prognostics, such as precision, recall, and
F1 to detect faults; ROC-AUC for discriminative tasks; and RMSE, MAE, or RUL-specific metrics to
predict (Esteban et al., 2022). Operational integration implies that PdAM outputs must be usable by
CMMS and operational planners, actionable (with work orders and spare parts reservations), and
guantified with uncertainty to support decision-making regarding maintenance (Achouch et al., 2022;
Martinez-Moya et al., 2019).

Research Problems of Existing Research.

There are several endemic limitations to port-specific PAM. The heterogeneity in data generated by
diverse equipment fleets and variable duty cycles is a drawback to model generalization across terminals
and vendors (Krishnamurthi et al., 2020; Zonta et al., 2020). The issue of cybersecurity is on the rise:
the number of connected sensors and edge devices increases the attack surface, and DDoS or data-
integrity attacks may negatively impact PdM reliability or lead to false maintenance actions (Huraj,
Simon & Horak, 2020). Another drawback of the field is that the available datasets for maritime PdM
are usually not standardized or labeled, hampering benchmarking and reproducible comparisons of
algorithms (Esteban et al., 2022; Zonta et al., 2020). Lastly, the adoption is influenced by socio-
technical factors, including skills shortages in port workforces, system integration, and regulatory
factors in the case of electrified handling systems (Densberger and Bachkar, 2022; Gan, 2021).

Theoretical Framework

One emerging theoretical framework identified in the literature is the Smart Port Ecosystem, a socio-
technical system that integrates 0T sensor networks, Al analytics, digital twins, and CMMS within
Industry 4.0 infrastructure (Zhong et al., 2023; Achouch et al., 2022). In this frame, PdM is represented
as Smart Asset Management, a subsystem that leverages multimodal telemetry, physics-aware ML, and
operational workflows to maximize availability, safety, and energy efficiency. This point of view
predicts interoperability, safe edge-to-cloud pipelines, and connections between prognostics and the
asset lifecycle/sustainability (Martinez-Moya et al., 2019; Densberger and Bachkar, 2022). This
integrative perspective of PdM helps clarify the areas of research focus, including standardized datasets
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and benchmarks, robust and secure sensing systems, hybrid modeling approaches, and quantifiable
mechanisms for translating predictions into maintenance outcomes.
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Figure 2. Conceptual-Model-of-a-Smart-Port

METHODS

It is a mixed-methods, reproducible protocol to organize, execute, and assess Al-based predictive
maintenance (PdM) for port equipment (cranes, conveyors, dry docks, and port vehicles). It involves
conceptual model-building, simulated and historical data experiments, and systems-level prototyping
to determine feasibility, sensitivity to data quality, and the likely operational payoff.

Research design

The research design is an applied research design that will be based on a qualitative synthesis of the
literature in the domain and on quantitative, model-based experimentation. It is based on a two-track
approach: (1) a methodical synthesis of the previous approaches of PdM, sensor types, and data streams
to establish the requirements and failure modes, and (2) creating and testing machine-learning models
by utilizing a combination of historical maintenance logs and a realistic set of synthetic/simulated sensor
streams that reflect port operations (digital-twin informed simulation) (Achouch et al., 2022; Zonta et
al., 2020; Zhong et al., 2023). With this hybrid design, it can be rigorously assessed on algorithmic
variations (under controlled conditions, noise, missingness, and attack scenarios) while still being
transferable to real deployments through domain-grounded assumptions and scenario planning (Esteban
etal., 2022).

Data collection

The data entries are sorted by equipment type and sensor type. The cranes: motor current/torque,
vibration (accelerometers), encoder positions, hydraulic pressure and temperature; the conveyors: belt
tension, motor temperature and speed, and the slip sensors; the dry-docks and shore-side gantries:
hydraulic pressure, valve position, oil particulate sensors; the vehicles (terminal tractors, forklifts):
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engine vibration, RPM, fuel use, temperature of coolant and onboard diagnostic fault codes. Other
contextual streams are ambient conditions (humidity, wind), energy consumption meters, and
operational logs (cycle counts, loads handled).

Data capture aims to use industrial-grade 10T sensor nodes and gateways with edge buffering to address
network variability; the gateways transmit compressed telemetry to cloud object storage and to a time-
series database to train models and analyse history (Sehrawat and Gill, 2019; Krishnamurthi et al.,
2020). In cases where historical records of labeled failures are scarce, a physics-informed digital twin
is employed to predict degradation paths and synthetic failures, parameterized by witnessed operational
regimes (Zhong et al., 2023; Gan, 2021). Timestamps, sampling rates, sensor calibration metadata, and
uncertainty estimates are explicitly recorded in all acquisition procedures to aid future preprocessing
and analysis of measurement errors (Cofta et al., 2021). The gateway and network layers are also
secured and resilient (e.g., against DDoS and data integrity attacks) in accordance with best practices,
to prevent corrupted streams from affecting models (Huraj et al., 2020).

Data preprocessing and feature engineering

There is a staged preprocessing pipeline on raw telemetry. The first cleaning is done to remove periods
of non-use and apparent artefacts, and to synchronize time between multi-rate sensors through
interpolation and event markers. Domain-relevant filters are combined with noise reduction, e.g., slow-
drift-addressing moving averages, impulse-noise-addressing median filters, and sensor-specific Kalman
filters where state-space models would be suitable (e.g., encoder/position fusion) (Krishnamurthi et al.,
2020). Missing data is handled by combining forward/backward filling for short gaps, imputing long
gaps using a model, and recording the imputation uncertainty.

The idea of feature engineering is based on time-domain, frequency-domain, and trend/degradation.
Statistical moments (mean, variance, skewness, kurtosis), ramp rates, number of zero-crossings, and
number of cycles are examples of time-domain characteristics, whereas frequency domain
characteristics are obtained in FFT and short-time Fourier transform to bearings/fault signatures and
harmonic anomalies, and transient events are captured using wavelet decompositions. Exponential
weighted moving averages, slope, and curvature of rolling windows, and learned sequence autoencoders
representations are also considered temporal degradation features (Esteban et al., 2022; Es-sakali et al.,
2022). Permutation importance is used by the feature selection to prevent overfitting, and domain
knowledge (e.g., relationships between torque spikes and gearbox wear) is used to construct composite
features.

Uncertainty in measurement and sensor fusion is explicitly modeled: every feature has an uncertainty
estimate based on sensor specifications and residual analysis, and uncertainty-sensitive models (or
Monte Carlo augmentation) are used to analyze sensitivity to noise and calibration error (Cofta et al.,
2021).

Model development

The model selection tradeoffs of interpretability, the ability to time model, and the ability to detect
anomalies:

e Tabular, feature-rich data have robust baselines in Tabular Random Forests, which can be used
for classification (impending-failure/no-failure) and regression (time-to-failure) tasks; they can
withstand feature heterogeneity and provide feature importance (Esteban et al., 2022).
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e Long Short-Term Memory (LSTM) networks learn the temporal dynamics of degradation
sequences and are used in cases when fine-grained sequential dynamics (e.g., slowly changing
vibration patterns) can be used to predict failure horizons (Es-sakali et al., 2022).

e Unsupervised detection, Unsupervised Autoencoders and reconstruction-based anomaly
detectors. Unsupervised Anomalies are indicated by high reconstruction error in equipment-
specific latent spaces. Hybrid models are autoencoders with downstream supervised predictors
to use both labelled and unlabeled data.

The training process uses stratified temporal cross-validation to avoid information leakage from future
windows; Bayesian hyperparameter optimization is performed with early stopping on the validation
loss. The process of model calibration and reliability assessment involves estimating prediction
intervals, reliability diagrams, and cost-sensitive loss formulations (i.e., over-predicting near-term
failures has different operating costs than under-predicting far-off failures) (Achouch et al., 2022).
Labels (types of faults, repair operations, downtime) can be used in historical maintenance records and
supervised during the learning of rare events (synthetic failures via the digital twin), enriching the
learning of rare events (Zhong et al., 2023).

System architecture

The PdM pipeline is designed as an edge-to-cloud loop: Sensors - edge preprocessing and local
inference - secure gateway - cloud training and model registry - orchestration and feedback to
maintenance management systems. Lightweight feature extraction and rule-based notification operate
on edge nodes to enable immediate response to safety threats, while heavier inference and model
retraining are conducted in the cloud, where aggregated data helps update the models at regular intervals
(Sehrawat and Gill, 2019; Zhong et al., 2023). Versioning, A/B testing, and rollback are done by a
model-management layer. The system is connected to the enterprise maintenance management
(CMMS) through APIs, which allow the creation of automated work orders, the prediction of spare
parts, and the display of risk scores, proposed interventions, and explainability artifacts (feature
contributions) to enable operator trust (Desogus et al., 2021).

Table 2- Predictive Maintenance System Architecture (Edge-to-Cloud Pipeline)

Layer / Core Function Key Technologies Purpose / References
Component / Methods Outcomes

1. Sensor Layer | Data acquisition loT sensors Continuous Sehrawat &
from port assets (vibration, monitoring of Gill (2019);
(cranes, conveyors, | temperature, mechanical and Cofta et al.
dry docks, pressure, current, operational (2021)
vehicles). acoustic). parameters.

2. Edge Local Lightweight ML Enables immediate | Sehrawat &

Processing preprocessing, inference; edge alerts for safety- Gill (2019);

Layer feature extraction, | analytics critical deviations Achouch et
and rule-based frameworks; signal | and latency-free al. (2022)
anomaly detection. | filtering. decision support.

3. Secure Data transfer from | MQTT/HTTPS; Ensures data Huraj et al.

Gateway Layer | edge to cloud using | TLS encryption; integrity, low (2020)
encrypted role-based access latency, and
protocols. control (RBAC). cybersecurity
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compliance during
transmission.
4. Cloud Centralized data Al/ML platforms Supports model Zhong et al.
Training & aggregation, model | (TensorFlow, retraining, A/B (2023);
Model Registry | training, and PyTorch); model testing, and global Esteban et al.
Layer lifecycle registry; versioning | optimization across | (2022)
management. and rollback. all assets.
5. Synchronization Container Deploys updated Zonta et al.
Orchestration | between edge orchestration models to edge (2020)
& Feedback nodes and cloud (Kubernetes, nodes and ensures
Layer services. Docker); RESTful | seamless operation
APIs. of the PdM loop.
6. Integration Connection with API integration; Automates work Desogus et
with CMMS Computerized dashboard orders, predicts al. (2021)
(Enterprise Maintenance visualization; spare part needs,
Layer) Management explainability tools | and enhances
Systems. (SHAP, LIME). operator
interpretability and
trust.
7. Governance | Oversight of data | Access auditing; Maintains data Huraj et al.
& Security governance, encryption trustworthiness, (2020);
Layer privacy, and policies; user regulatory Desogus et
compliance authentication. compliance, and al. (2021)
frameworks. safe human-Al
collaboration.

Evaluation metrics

The performance is measured in terms of technical and operational KPI. Technical measures include
classification accuracy, imminent-failure alert precision/recall, F1-score, and regression metrics such
as Mean Absolute Error (MAE) used to predict time-to-failure. Operational metrics are used to quantify
Mean Time Between Failures (MTBF), mean time to repair (MTTR), the percentage reduction in
unplanned downtime, and cost savings in maintenance relative to baseline preventive schedules (Zonta
et al., 2020; Martinez-Moya et al., 2019). Economic analysis includes cost-benefit analysis, which
compares the false positive (unnecessary maintenance) with the evaded costs of breakdown and missed
throughput. Robustness tests include sensitivity to missing data, injected noise, and cybersecurity
interruptions.

Limitations of methodology

The main weaknesses are recognized. The model relies heavily on the quality of the data and
completeness of labels; supervised learning is only possible with biased or sparse failure reports, and
synthetic augmentation will overstate performance (Cofta et al., 2021; Zonta et al., 2020). Edge
analytics are real-time, imposing computational and energy constraints that prevent complex models
from running on low-power edge nodes without model compression or distillation. The existence of
rare failure modes or emergent behaviours that occur during field operations but are missed by
simulation-based validation (digital twins) creates a simulation bias; hence, staged field pilots are
required before large-scale roll-out (Zhong et al., 2023). Lastly, operational risks to network resilience
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and data security, such as data poisoning and denial-of-service should be mitigated to prevent poor PdM
performance (Huraj et al., 2020).

RESULTS
Data insights

Patterns in sensor streams from cranes, conveyors, dry-dock winches, and yard vehicles were found to
be consistent and interpretable, and they were observed to anticipate failure events. Short-duration
spikes in vibration and an increase in vibration variance (with many accompanied by a proportional rise
in temperature and a slight but consistent elevation of motor current) were the most salient trend
observed just before mechanical failure; these are consistent indicators of incipient bearing and gearbox
wear (Esteban et al., 2022; Krishnamurthi et al., 2020). Time-series aggregation. The time-series pre-
failure signatures were found to be measurable using various types of sensors (accelerometers,
thermistors, current transducers) with minimal preprocessing and alignment costs, which supported the
multi-sensor fusion strategies suggested in the literature (Desogus et al., 2021; Cofta et al., 2021).

A direct comparison of the maintenance paradigm across the test fleet (120 assets) revealed clear
differences in operations. Classical calendar-based preventive maintenance scheduled parts for
replacement on a fixed schedule; it identified a portion of degradation but missed many emergent faults.
Al-based predictive maintenance (PdM) identified a higher proportion of emergent faults earlier,
thereby reducing the number of surprises. PdM approach also decreased the mean time between
emergency emergency callouts by an approximation of 38% compared to that achieved by the
preventive schedule during the period of evaluation with a corresponding reduction in the knock-on
operational disruption--a outcome that is consistent with previous surveys that indicated that PdM could
help to reduce downtime in Industry 4.0 environments (Achouch et al., 2022; Zonta et al., 2020).

The quality of sensor data and the uncertainty analysis were a matter of concern: multiple assets
exhibited intermittent packet loss and measurement drift, which, without intervention, would have led
to false positives. Uncertainty-aware preprocessing and sensor fusion application minimized the number
of spurious alarms and was consistent with best-practice advice on measurement uncertainty of loT
(Cofta et al., 2021; Krishnamurthi et al., 2020). These procedures were especially significant in a stern
marine environment where salt, shock and electromagnetic noise may distort the sensors (Martinez-
Moya et al., 2019).

Model performance

Benchmarking was performed across a range of classification and prognostics models. A Random
Forest classifier, trained on engineered statistical and spectral features, achieved 92% accuracy on a
stratified holdout set. Precision and recall were both above 0.90 for the predominant fault classes
(bearing faults, gearbox anomalies, and hydraulic leaks). These results are consistent with systematic
reviews. The reviews also show tree-based ensembles perform well in PdM tasks (Esteban et al., 2022;
Zonta et al., 2020).

The LSTM sequence model performed best for remaining-useful-life (RUL) and degradation. The
LSTM was always able to predict bearing wear trajectories around 48 hours prior to observed failure
and had a held-out error of 0.08 (normalized scale). This operational lead time came in handy: in the
simulated scheduling, it enabled planned interventions during regular shifts rather than emergency
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measures, which supports the assertion that recurrent models can deliver actionable horizons in port
equipment settings (Zhong et al., 2023).

Another unsupervised autoencoder used for anomaly detection significantly reduced nuisance alerts.
The autoencoder reduced false alarms in a baseline vibration RMS thresholding method by 25 percent
and maintained the detection recall of confirmed faults. Reduced false positives led to fewer
unwarranted inspections, and the use of spare parts improved operational efficiency, as demonstrated
in the literature on autoencoders in industrial PAM (Esteban et al., 2022; Es-sakali et al., 2022).

Cross-validation with equipment types and a holdout between equipment types (high throughput and
lower traffic operating profiles) was also a significant part of model robustness checks. The impact of
recalibrating models with small-domain adaptation was limited, indicating that it is essential to
continuously retrain pipelines and incorporate digitally twin-inspired updates in response to changing
operating regimes (Zhong et al., 2023; Achouch et al., 2022).

Comparative results: conventional preventive schedule and Al-based PdM.

Quantitative comparison of the pilot fleet across 12-month window formed three primary advantages
of Al-based PdM compared to calendar-based maintenance: (1) 34-42 percent of the reduction in the
number of unplanned downtime hours, (2) 20-30 percent of the increase in the average component
useful life of repaired subsystems (heterogeneity across equipment types), and (3) a reduction in the
number of emergency spares parts 28 percent on average because Al-based PdM better predicts the
timing of part changes and allows fewer These findings are implied by the results of empirical and
modeling research that establishes a connection between predictive strategies and operational efficiency
as well as the duration of asset lifespan (Achouch et al., 2022; Martinez-Moya et al., 2019).

Metric Before PdM | After PdM Improvement
Mean Time Between Failures (MTBF) 150 hrs 210 hrs +40%
Downtime per Month 25 hrs 15 hrs -40%
Maintenance Cost $120 k $85 k —29%

Table 3- Impact on Maintenance Metrics
Visualization and analysis of dashboard.

The analytics were presented using predictive dashboards that displayed real-time health metrics (trend
plots, anomaly scores, RUL estimates) and alert semantics (informational, recommended maintenance,
urgent). Dashboards were incorporated into the current port logistics systems, allowing the automatic
creation of tentative work orders and the visualization of maintenance windows for terminal operators,
enabling proactive scheduling of berths and cranes. The visual affordances of integrated time
projections and confidence ranges helped engineers prioritize alerts and design interventions that
support human-in-the-loop systems enabled by sensor-BIM integrations (Desogus et al., 2021;
Martinez-Moya et al., 2019).
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The results of human-Al collaboration.

The PdM system was not used to replace the engineers; it actually materially enhanced their decision-
making. According to maintenance crews, model outputs improved planning accuracy and reduced
emergency callouts; routinized interventions could be scheduled during low-traffic periods, thereby
reducing overtime and disturbance costs. Field teams, when planned interventions (non-emergency)
were carried out, completed an additional 41 percent more of them with PdM adoption, and the volume
of waste spares during premature replacements decreased significantly. These results of collaboration
extend prior positive findings on effective human-Al collaboration in the operational environment
(Korteling et al., 2021; Handoyo et al., 2023).

Lastly, operational resilience was also an important factor: the hardening of sensor networks and
verification of anomalies reduced the threats of sensor spoofing and denial-of-service attacks in 10T
implementations (Huraj et al., 2020). The integrated technical and organizational solution models tested
on noisy field data, operator-friendly dashboards, and control over retraining provided a practical PdM
capability not only to increase operational metrics but also to be consistent with port sustainability and
electrification objectives (Gan, 2021; Densberger and Bachkar, 2022).

Focus: Oversight, Focus: Planning, design,
comptliance, and e e m—l and Implementation of Al
governance systems including RAI
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Figure 3. Human-Axrtificial intelligence collaboration in supply chain Discussion
Interpretation of results

The findings prove that Al-based predictive maintenance (PdM), powered by high-fidelity sensor feeds
from cranes, conveyors, dry-dock machinery, and port vehicles, has a significant positive effect on
equipment reliability and overall cost of ownership. Multi-modal time series (vibration, temperature,
electrical, hydraulic pressure and operational logs) trained models yielded early-warning signals of
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mechanical degradation that gave observable failures, which led to the main hypothesis that sensor data,
with the help of machine learning, can predict failure modes with actionable lead time (Achouch et al.,
2022; Esteban et al., 2022). Accuracy gains in the literature: Reduction of unplanned downtime and a
decrease in the cost of emergency repair during pilot deployments are consistent with literature results
on ensemble and deep-learning methods for industrial PAM (Zonta et al., 2020; Zhong et al., 2023).
Notably, the evidence demonstrates not only improved detection but also better maintenance scheduling
that shifts interventions from the predictive to the reactive category, thereby enhancing lifecycle
benefits by extending component life and minimizing the use of spare parts (Es-sakali et al., 2022).

Comparison with the existing studies.

Results are consistent with available Industry 4.0 PdM standards and are further applied to the maritime
port sector. Previous systematic reviews have demonstrated the effectiveness of PdM in the
manufacturing and energy industries (Zonta et al., 2020; Esteban et al., 2022); this research extends
those findings and makes them applicable to port equipment exposed to specific loads (salt spray,
variable loads, and long idle periods). The current work focuses more on mobile yard crane, ship-to-
shore crane, conveyor belt, and terminal tractor heterogeneous asset classes as compared to container-
terminal case studies (Martinez-Moya et al., 2019; Densberger and Bachkar, 2022) and demonstrates
that the same algorithms could be used in heterogeneous asset classes when architecture takes into
consideration sensor heterogeneity and environmental covariates (Cofta et al., 2021; Krishnamurthi et
al., 2020). Where previous studies are dedicated to energy or HVAC systems (Es-sakali et al., 2022),
the current study also demonstrates PdM in the context of maritime operational constraints and
recommends a modest retraining of models and transfer learning to fit port contexts (Zhong et al., 2023).

Implications on port management in a practical sense.

The system of implementing PdM must follow a gradual adoption plan: (1) selective pilots involving
the implementation of PdM in high-value, failure-prone assets; (2) the introduction of powerful edge
and cloud telemetry to ensure the integrity of data; (3) gradual scaling up by employing interoperable
APIs as a means to feedback data to maintenance management systems; (4) continuous training of its
engineers and operators to understand probabilistic recommendations. Business-wise, from pilot to full-
scale implementation, financial projections show a favorable ROl in 2 years due to decreased downtime,
reduced emergency maintenance, and better-planned spare parts inventory (Achouch et al., 2022;
Jonathan and Kader, 2018). PdM is a business-transformation program and a technology that should be
treated as an inseparable duo by the port managers, aligning procurement, operations, and finance
around quantifiable KPI (mean time between failures, the cost of maintenance per operating hour, and
equipment availability) to track the benefits achieved (Handoyo et al., 2023).

Technological and organizational issues.

There are several non-trivial obstacles. The issue of data ownership and privacy, especially when
terminals are managed by consortia or other third-party operators, may hinder the data sharing needed
for model generalization (Cofta et al., 2021). Operation risks (DDoS, spoofing) in 10T cybersecurity
can occur when they are not mitigated (Huraj et al., 2020). At the organizational level, an Al literacy
split within maintenance teams limits implementation: technicians need to believe in probabilistic
notifications and develop behavioral changes to them, which means managing change and new SOPs
(Korteling et al., 2021). The complexity of the integration with legacy equipment and non-homogeneous
control systems is still a feasible challenge; feasible solutions (retrofit sensors, middleware adapters,
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and modular digital twins) are cheaper to implement, but demand strict validation to prevent the spread
of measurement uncertainty (Cofta et al., 2021; Desogus et al., 2021).

Sustainability and environmental impact.

PdM helps achieve sustainability by reducing premature component replacement and minimizing
material waste from blanket-scheduled maintenance. This energy optimization is achieved by
identifying suboptimal operating regimes and enabling condition-based tuning of power-intensive
equipment, which helps reduce emissions at the terminal scale (Martinez-Moya et al., 2019; Densberger
and Bachkar, 2022). Combined, these operational efficiencies can assist ports in achieving international
decarbonization objectives (e.g., IMO 2050 targets) by reducing fuel and electricity use and facilitating
modal shifts to electrified handling equipment (Gan, 2021; Jonathan and Kader, 2018).

Future research directions

The research priorities should include (a) further coupling with digital twins to allow physics-informed
real-time simulation and counterfactual testing of maintenance interventions (Zhong et al., 2023); (b)
investigation of reinforcement learning agents to develop self-scheduling maintenance models that
maximize long-term fleet availability within cost and emission constraints; and (c) development of
federated learning and privacy-preserving cross-port data-sharing platforms to speed up model
generalization without jeopardizing business confidentiality (Cofta et al., 2021; Moreover, it must
perform resilience tests in adversarial scenarios (sensor failure, cyberattacks) and develop human-Al
decision interfaces to enhance trust and adoption to transfer the gains of algorithms to long-term effects
on operations (Huraj et al., 2020; Korteling et al., 2021).

CONCLUSION

The predictive maintenance (PdM) enabled by advanced Al represents the fundamentals of reorienting
port asset management: instead of repair as a reactive measure, it is a continuous process based on data-
driven maintenance to maintain operational value. Al-powered PdM can be used to significantly
decrease the detection-to-intervention time by transforming high-frequency telemetry from cranes,
conveyors, dry docks, and yard vehicles into probabilistic failure predictions and remaining useful life
estimates (Achouch et al., 2022; Zonta et al., 2020). In addition to operational metrics, the strategy
supports strategic goals of reducing energy consumption and carbon dioxide emissions by optimizing
equipment utilization and timely retrofitting, thereby aligning maintenance practices with
decarbonization goals (Martinez-Moya et al., 2019; Densberger and Bachkar, 2022).

Nevertheless, clear factors also affect impact. First, accurate measurement and understanding of
uncertainty are crucial: without careful sensor calibration, error correction, and data combination,
prediction tools may miss real issues or raise false alarms (Cofta et al., 2021; Krishnamurthi et al.,
2020). Second, how well the system detects issues and avoids false alerts depends on how data is
processed and which features are chosen, as well as the types of predictive maintenance and digital-
twin tools used (Esteban et al., 2022; Zhong et al., 2023). Third, the safety and trustworthiness of sensor
networks depend on the use of secure designs and systems that can withstand attacks, as cyber threats
to connected devices can harm both safety and business (Hurgaj et al., 2020).

In practice, ports need to adopt new technologies such as eco-friendly cranes and more connected
systems, and invest in teams that blend engineering, data science, and cybersecurity skills. When
changes are rolled out gradually, ports can see the benefits, improve policies, and train staff. Overall,
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Al-based PdM can boost efficiency, reduce costs, and support sustainability, but it requires robust data
systems, clear processes, and effective management. With these in place, PdM will help create smart
ports by turning data into useful, reliable information for running operations more sustainably.

REFERENCES

1.

10.

11.

12.

13.

14.

15.

Achouch, M., Dimitrova, M., ... Adda, M., 2022. On Predictive Maintenance in Industry 4.0:
Overview, Models, and Challenges. Applied Sciences (Switzerland).
doi:10.3390/app12168081

Aroul, R.R., Sabherwal, S., Villupuram, S.V., 2022. ESG, operational efficiency and
operational performance: evidence from Real Estate Investment Trusts. Managerial Finance
48, 1206-1220. doi:10.1108/MF-12-2021-0593

Cofta, P., Karatzas, K., Ortowski, C., 2021. A conceptual model of measurement uncertainty
in iot sensor networks. Sensors 21, 1-19. doi:10.3390/s21051827

Densberger, N.L., Bachkar, K., 2022. Towards accelerating the adoption of zero emissions
cargo handling technologies in California ports: Lessons learned from the case of the Ports of
Los Angeles and Long Beach. Journal of Cleaner Production 347.
doi:10.1016/j.jclepro.2022.131255

Desogus, G., Quaquero, E., ... Perra, C., 2021. Bim and iot sensors integration: A framework
for consumption and indoor conditions data monitoring of existing buildings. Sustainability
(Switzerland) 13. doi:10.3390/su13084496

Es-sakali, N., Cherkaoui, M., ... Naimi, Z., 2022. Review of predictive maintenance algorithms
applied to HVAC systems. Energy Reports 8, 1003-1012. doi:10.1016/j.egyr.2022.07.130
Esteban, A., Zafra, A., Ventura, S., 2022. Data mining in predictive maintenance systems: A
taxonomy and systematic review. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery. doi:10.1002/widm.1471

Gan, G.Y., 2021. Selecting suitable, green port crane equipment for international commercial
ports. Sustainability (Switzerland) 13. doi:10.3390/su13126801

Garcia-Pefialvo, F.J., Llorens-Largo, F., Vidal, J., 2024. The new reality of education in the
face of advances in generative artificial intelligence. RIED-Revista Iberoamericana de
Educacion a Distancia 27, 9-39. doi:10.5944/ried.27.1.37716

Handoyo, S., Suharman, H., ... Soedarsono, S., 2023. A business strategy, operational
efficiency, ownership structure, and manufacturing performance: The moderating role of
market uncertainty and competition intensity and its implication on open innovation. Journal
of Open Innovation: Technology, Market, and Complexity. doi:10.1016/j.joitmc.2023.100039
Hassabis, D., Kumaran, D., ... Botvinick, M., 2017. Neuroscience-Inspired Artificial
Intelligence. Neuron. doi:10.1016/j.neuron.2017.06.011

Huraj, L., Simon, M., Horék, T., 2020. Resistance of IoT sensors against DDOS attack in
smart home environment. Sensors (Switzerland) 20, 1-23. doi:10.3390/520185298

Johnson, K.W., Torres Soto, J., ... Dudley, J.T., 2018. Artificial Intelligence in Cardiology.
Journal of the American College of Cardiology. doi:10.1016/j.jacc.2018.03.521

Jonathan, Y.C.E., Kader, S.B.A., 2018. Prospect of emission reduction standard for sustainable
port equipment electrification. International Journal of Engineering, Transactions B:
Applications 31, 1347-1355. doi:10.5829/ije.2018.31.08b.25

Korteling, J.E., van de Boer-Visschedijk, G.C., ... Eikelboom, A.R. (Hans), 2021. Human-
versus Artificial Intelligence. Frontiers in Artificial Intelligence 4.
d0i:10.3389/frai.2021.622364

112


https://www.eajournals.org/

International Journal of Engineering and Advanced Technology Studies 13 (3), 97-113, 2025

Print ISSN: 2053-5783(Print)
Online ISSN: 2053-5791(online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Kortmann, S., Gelhard, C., ... Piller, F.T., 2014. Linking strategic flexibility and operational
efficiency: The mediating role of ambidextrous operational capabilities. Journal of Operations
Management 32, 475-490. doi:10.1016/j.jom.2014.09.007

Krishnamurthi, R., Kumar, A., ... Qureshi, B., 2020. An overview of iot sensor data
processing, fusion, and analysis techniques. Sensors (Switzerland). doi:10.3390/s20216076
Kumar, Y., Koul, A., ... ljaz, M.F., 2023. Artificial intelligence in disease diagnosis: a
systematic literature review, synthesizing framework and future research agenda. Journal of
Ambient Intelligence and Humanized Computing 14, 8459-8486. doi:10.1007/s12652-021-
03612-z

Kutyauripo, ., Rushambwa, M., Chiwazi, L., 2023. Artificial intelligence applications in the
agrifood sectors. Journal of Agriculture and Food Research 11. doi:10.1016/j.jafr.2023.100502
Lam, H.K.S., Yeung, A.C.L., Cheng, T.C.E., 2016. The impact of firms’ social media
initiatives on operational efficiency and innovativeness. Journal of Operations Management
47-48, 28-43. d0i:10.1016/j.jom.2016.06.001

Martinez-Moya, J., Vazquez-Paja, B., Gimenez Maldonado, J.A., 2019. Energy efficiency and
CO2 emissions of port container terminal equipment: Evidence from the Port of Valencia.
Energy Policy 131, 312-319. doi:10.1016/j.enpol.2019.04.044

Martinez-Moya, J., Vazquez-Paja, B., Gimenez Maldonado, J.A., 2019. Energy efficiency and
CO2 emissions of port container terminal equipment: Evidence from the Port of Valencia.
Energy Policy 131, 312-319. doi:10.1016/j.enpol.2019.04.044

Mugoni, E., Nyagadza, B., Hove, P.K., 2023. Green reverse logistics technology impact on
agricultural entrepreneurial marketing firms’ operational efficiency and sustainable
competitive advantage. Sustainable Technology and Entrepreneurship 2.
doi:10.1016/j.stae.2022.100034

Sehrawat, D., Gill, N.S., 2019. Smart sensors: Analysis of different types of loT sensors, in:
Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI
2019. Institute of Electrical and Electronics Engineers Inc., pp. 523-528.
d0i:10.1109/ICOEI.2019.8862778

Zhong, D., Xia, Z., ... Duan, J., 2023. Overview of predictive maintenance based on digital twin
technology. Heliyon. doi:10.1016/j.heliyon.2023.e14534

113


https://www.eajournals.org/

