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Abstract: This study was carried out on extended least absolute shrinkage with 

selection operator technique for sparse regression modeling with high dimensional 

date. The objective of this paper is to advance sparse regression modeling techniques 

for high-dimensional data through the enhancement of the LASSO algorithm and its 

application, by developing an extended LASSO model to improve variable selection in 

high-dimensional datasets. The study posits that the extended LASSO algorithm will 

effectively address key challenges in high-dimensional data analysis, including 

multicollinearity and over-fitting. The research design focuses on LASSO formulation 

and sparsity-Inducing properties using least absolute shrinkage and selection operator 

(LASSO) formulation. Regularization techniques and their impact on bias-variance 

trade-off. Regularization techniques adjust the model's complexity to achieve an 

optimal balance between bias and variance, thereby improving the model's 

performance on unseen data. This paper hypothesized that the extended LASSO 

algorithm can be successfully applied to real-life high-dimensional datasets, resulting 

in improved model performance and greater applicability in various fields. 

Conclusively, this study offers a valuable contribution to both the theoretical 

framework of sparse regression modeling and its practical use in tackling high-

dimensional data challenges, leading to better decision-making across a range of 

industries. 

 

Keywords: least absolute shrinkage, selection operator technique, sparse regression 

modeling, high dimensional date 
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INTRODUCTION  

 

High-dimensional data has become increasingly prevalent in modern fields such as 

genomics, finance, marketing, and image processing, where the number of variables 

often exceeds the number of observations (Papoutsoglou, et al., 2023). This presents 

unique challenges in statistical modeling, particularly in areas such as variable selection, 

prediction accuracy, and model interpret-ability. The imbalance between variables and 

observations can lead to several issues, including over-fitting, multicollinearity, and 

computational inefficiency, all of which complicate the development of reliable and 

interpretable models. In traditional regression models like Ordinary Least Squares 

(OLS), the curse of dimensionality severely limits their ability to perform well in high-

dimensional spaces (Bertsimas & Van, 2020). The presence of a large number of 

predictor variables relative to the number of observations leads to sparse data, resulting 

in models that are often over-fitted to noise rather than capturing the underlying patterns. 

Additionally, multicollinearity among predictor variables can further destabilize model 

estimates, making it difficult to assess the importance of individual variables. 

 

Sparse regression methods, particularly the Least Absolute Shrinkage and Selection 

Operator (LASSO), have emerged as important tools for handling high-dimensional 

data. LASSO is capable of performing both variable selection and regularization 

simultaneously, shrinking some regression coefficients to zero and thus simplifying the 

model. However, despite its popularity, LASSO has its own limitations, particularly in 

handling correlated variables and balancing bias and variance trade-offs in high-

dimensional settings. 

 

Several extensions of LASSO, such as the Elastic Net and Group LASSO, have been 

developed to address some of these shortcomings (Mei & Montanari, 2022). However, 

there remains a need for further advancements to improve model accuracy, variable 

selection, and computational efficiency. The focus of this study is to develop an 

extended LASSO technique that enhances the ability to model high-dimensional data, 

offering improvements in both theoretical and practical applications. This study aims 

to contribute to the field by proposing an advanced sparse regression modeling 

technique that provides more robust, interpretable, and computationally efficient 

solutions for high-dimensional data analysis. High-dimensional data presents 

significant challenges in statistical modeling, including over-fitting, multicollinearity, 

and computational inefficiencies, especially when the number of variables exceeds the 

number of observations. Traditional methods like Ordinary Least Squares (OLS) and 

even the standard LASSO algorithm struggle with correlated variables, producing 

biased estimates and often being computationally intensive. While extensions like 

Elastic Net and Group LASSO offer improvements, there remains a need for a more 

efficient algorithm that can enhance variable selection, prediction accuracy, and 

computational performance in high-dimensional settings. This study aims to develop 

an extended LASSO technique to address these limitations and provide more reliable 

and interpretable models for real-world applications. 
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LITERATURE REVIEW 

  

In recent years, advancements in LASSO have been driven by the need to handle high-

dimensional datasets more efficiently. High-dimensional data, where the number of 

variables often exceeds the number of observations, poses challenges such as over-

fitting, multicollinearity, and computational inefficiency. Traditional LASSO, 

introduced by (Tibshirani, 1996), revolutionized the field by performing variable 

selection and regularization. Group LASSO, introduced by Yuan and Lin (2006), is 

designed to handle situations where predictors are naturally grouped together, and it is 

desirable to select entire groups of variables rather than individual variables 

(Utazirubanda, M., & Ngom, 2021). This is particularly useful in applications where 

the variables within a group are correlated or represent related features, such as in gene 

expression data, where genes may be grouped by pathways or biological functions. The 

exponential growth of data in various fields in recent years such as genomics, finance, 

and image processing has led to an increasing need for effective regression models that 

can handle high-dimensional datasets (Chen, Chi, Fan, & Ma, 2021). Traditional 

regression methods often fail in these scenarios due to the "p > n" problem, where the 

number of predictors (p) exceeds the number of samples (n), leading to over-fitting and 

poor generalization (Mei & Montanari, 2022). Sparse regression methods, which aim 

to select a subset of relevant predictors while simultaneously estimating the associated 

coefficients, have emerged as a powerful tool for high-dimensional data analysis. 

Among these methods, (Papoutsoglou, et al., 2023). 

High-dimensional data analysis deals with datasets where the number of variables 

(features) is much larger than the number of observations (samples (Pes, 2020)). This 

scenario is common in various fields such as genomics, finance, image processing, and 

social sciences, where data collection technologies have advanced, leading to datasets 

with hundreds or thousands of variables. Analyzing such datasets presents several 

challenges and requires specialized techniques to extract meaningful information. 

Analysis of high-dimensional data poses several challenges that are not typically 

encountered in low-dimensional settings (Ray, Reddy, & Banerjee, 2021). These 

challenges arise due to the increased complexity and sparsity of the data, as well as the 

computational burden of analyzing high-dimensional datasets. Sparse regression is a 

type of regression analysis that aims to identify a subset of important variables from a 

larger set of potential predictor variables. In sparse regression, the model includes only 

a few of the available predictors, with the rest of the coefficients set to zero (Bertsimas 

& Van, 2020). This sparsity property makes the model more interpretable and can 

improve its predictive performance, especially in high-dimensional data settings where 

the number of predictors is much larger than the number of observations. Ridge 

Regression, also known as Tikhonov regularization (La, Eickenberg, Nunez-elizalde, 

& Gallant, 2022), is one of the earliest methods developed to handle multicollinearity 

in regression models, where predictors are highly correlated. It introduces a penalty on 

the size of the coefficients to prevent them from becoming too large. 
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METHODS 

Least Absolute Shrinkage and Selection Operator (LASSO) Formulation. LASSO is a 

regression analysis method that performs both variable selection and regularization to 

enhance the prediction accuracy and interpretability of the statistical model it produces. 

The LASSO was introduced by Robert Tibshirani in 1996. 

The LASSO regression is formulated as (Tibshirani, 1996): 

�̂�𝑙𝑎𝑠𝑠𝑜 = arg 𝑚𝑖𝑛 {
1

2𝑛
∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

 )

2
𝑛

𝑖=1

+ 𝜆 ∑ ⎹𝛽𝑗⎹

𝑝

𝑗=1

 } 

where: 

yi is the response variable for the ijth observation. 

xi is the value of the jth predictor variable for the ith observation. 

βj are the coefficients of the regression model. 

λ≥0 is the regularization parameter, controlling the strength of the penalty. 

The first term in the objective function,  
1

2𝑛
∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1  )

2𝑛
𝑖=1 the residual sum of squares (RSS), which measures the fit of 

the model to the data.  

The second term, 

∑ ⎹𝛽𝑗⎹𝑝
𝑗=1  is the ℓ1-norm penalty, which induces sparsity in the coefficient estimates. 

The regularization techniques and their impact on bias-variance trade-off, 

regularization refers to a set of techniques used in statistical modeling and machine 

learning to prevent over-fitting, especially when dealing with high-dimensional data or 

complex models. The bias-variance trade-off is a key concept in understanding 

regularization. It reflects the balance between two sources of error in a model. 

Regularization techniques adjust the model's complexity to achieve an optimal balance 

between bias and variance, thereby improving the model's performance on unseen data. 

Common regularization techniques were implored. 

Ridge Regression (L2 Regularization) 

βhat = arg 𝑚𝑖𝑛 {
1

2𝑛
∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

 )

2
𝑛

𝑖=1

+ 𝜆 ∑ 𝛽2
𝑗
⎹

𝑝

𝑗=1

 } 

Impact on Bias-Variance Trade-off: 

Bias: Ridge regression introduces a penalty on the size of the coefficients, which 

can increase bias by shrinking the coefficients towards zero, leading to a simpler 

model. 

Variance: By shrinking the coefficients, Ridge regression reduces the model's 

sensitivity to the training data, thus lowering variance. 
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Trade-off: Ridge regression can reduce variance at the cost of introducing some 

bias, leading to a model that generalizes better to new data. 

LASSO (L1 Regularization) 

�̂�𝑙𝑎𝑠𝑠𝑜 = arg 𝑚𝑖𝑛 {
1

2𝑛
∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

 )

2
𝑛

𝑖=1

+ 𝜆 ∑ ⎹𝛽𝑗⎹

𝑝

𝑗=1

   } 

Impact on Bias-Variance Trade-off: 

Bias: LASSO introduces bias by penalizing the absolute values of the coefficients, 

often driving some to zero, which can result in a sparse model. 

Variance: By effectively reducing the number of predictors, LASSO reduces 

variance and improves the model’s generalizability. 

Trade-off: The LASSO trade-off involves increasing bias (due to the penalty) 

while significantly reducing variance, especially in high-dimensional datasets 

where many predictors may be irrelevant. 

Elastic Net 

𝛽ℎ𝑎 = 𝑎𝑟𝑔𝑚𝑖𝑛 {
1

2𝑛 
∑(𝑦𝑖

𝑛

𝑖=1

− ∑ 𝑥𝑖𝑗

𝑝

𝑗=1

𝛽𝑗)^2 + 𝜆1 ∑ ⎹𝛽𝑗⎹ +

𝑝

𝑗=1

𝜆2 ∑ 𝑝2
𝑗

𝑝

𝑗=1

} 

 

Here, λ1 and λ2 are regularization parameters for the ℓ1-norm and ℓ2-norm 

penalties, respectively. 

Impact on Bias-Variance Trade-off: 

Bias: Elastic Net introduces bias by shrinking coefficients through both the ℓ1-norm 

(LASSO) and ℓ2-norm (Ridge) penalties. 

Variance: It reduces variance by combining the effects of Ridge (which handles 

multicollinearity well) and LASSO (which performs variable selection). 

Trade-off: Elastic Net balances the strengths of Ridge and LASSO, offering a flexible 

approach to managing the bias-variance trade-off, especially in cases of highly 

correlated predictors. In this study, the following assumptions of AWENGL were 

adopted. The Adaptive Weighted Elastic Net Generalized LASSO (AWENGL) is built 

upon the following assumptions to ensure its theoretical validity and practical 

effectiveness in high-dimensional sparse regression. By adhering to these assumptions, 

AWENGL ensures reliable feature selection, interpretable coefficients, and robust 

predictive performance, making it a powerful tool for high-dimensional sparse 

regression tasks 

i. High-Dimensional Data Structure 

The number of predictors (p) can exceed the number of observations (n), a common 

scenario in high-dimensional datasets. The design matrix (X) is assumed to have 

full column rank or to be regularized to handle rank deficiencies. 

ii. Sparsity Assumption 
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The true regression coefficients (𝛽 ) are sparse, meaning that only a subset of 

predictors has non-zero values. This assumption ensures that AWENGL can 

effectively identify and prioritize important predictors.   

iii. Feature Correlations 

Moderate multicollinearity is allowed among predictors. AWENGL leverages the 

Elastic Net's capability to group correlated features while penalizing them 

adaptively through weighted penalties. 

iv. Penalty Function 

The penalty terms in AWENGL are a combination of LASSO and Ridge penalties:  

 

𝜆1 ∑  𝑤𝑗⎹𝛽𝑗| + 𝜆2

𝑝

𝑗=1

 ∑  𝛽2
𝑗

𝑝

𝑗=1

 

v. Model Identifiability 

The model is identifiable under the assumed sparsity structure and appropriate tuning 

of regularization parameters (λ1 and λ2). 

RESULTS AND DISCUSSION  

The objective of this study is to advance the LASSO algorithm with a novel approach 

called Adaptive Weighted Elastic Net with Group LASSO (AWENGL). Below is a 

detailed exploration of the proposed improvements and modifications, their rationale, 

and the expected benefits. 

Detailed mathematical derivation for the Adaptive Weighted Elastic-Net Group 

LASSO (AWENGL) combines adaptive weights, Elastic-Net, and Group LASSO 

penalties. 

Standard LASSO Formulation 

The standard LASSO problem is formulated as: 

�̂� = arg 𝑚𝑖𝑛 {
1

2𝑛
||𝑦 − 𝑋𝛽||2

2 + 𝜆 ∑ |𝛽𝑗|

𝑝

𝑗=1

 

Where 
1

2𝑛
||𝑦 − 𝑋𝛽||2

2  is the mean square error loss function 

𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑡𝑒𝑟𝑚(𝐿𝐴𝑆𝑆𝑂 𝑝𝑎𝑛𝑎𝑙𝑡𝑦)𝑝𝑟𝑜𝑚𝑜𝑡𝑖𝑛𝑔 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝛽 

 

Elastic-Net Penalty 

The Elastic-Net penalty is a combination of LASSO (ℓ1) and Ridge (ℓ2) penalties: 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐸𝑙𝑎𝑠𝑡𝑖𝑐−𝑁𝑒𝑡 = 𝛼 ∑ |𝛽𝑗|

𝑝

𝑗=1

+
1 − 𝛼

2
∑ 𝛽2

𝑗

𝑝

𝑗−1

 

Where 𝛼𝜖[0.1] controls the balance between e1 and e2 penalty 

When 𝛼 − 0, 𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝑟𝑖𝑑𝑔𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛. 

Group LASSO Penalty 
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In Group LASSO, predictors are grouped into GGG groups, and the penalty is applied 

to the ℓ2 norm of the coefficients within each group: 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐺𝑟𝑜𝑢𝑝 = 𝜆1 ∑ ||𝛽𝑔||2

𝐺

𝑔=1

 

𝑤ℎ𝑒𝑟𝑒  𝛽𝑔 𝑡ℎ𝑒 coefficient for the group g and 𝜆1  is the regularization 

parameter for the group penalty 

Adaptive Weights 

Adaptive LASSO introduces weights to the penalty term to address bias issues. 

The weights are typically inversely proportional to the magnitude of initial 

coefficient estimates. Define adaptive weights wj for each predictor βj 

𝑤𝑗 =
1

|�̂�𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗
|Υ

 

Where �̂�𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are estimate from initial model e.g ridge regression and Υis a 

turning parameters. 

 

Combined improved lasso (AWENGL) formulation 

Integrating these components, the improved LASSO problem (AWENGL) is 

formulated as: 

The AWENGL optimization problem is formulated as: 

�̂� = arg 𝑚𝑖𝑛 {
1

2𝑛
||𝑦 − 𝑋𝛽||2

2 + 𝜆1 ∑  𝑤𝑔||𝛽𝑔||2

𝐺

𝑔=1

+ 𝜆2 (𝛼 ∑ 𝑤𝑗⎹𝛽𝑗⎹ + (1 − 𝛼)

𝑝

𝑗=1

||𝛽||2
2) 

Where 

{
1

2𝑛
||𝑦 − 𝑋𝛽||2

2 + is the mean squared error loss. 

𝜆1 ∑  𝑤𝑔||𝛽𝑔||2 +   is the Group LASSO penalty with adaptive weights wg

𝐺

𝑔=1

 

𝜆2(𝛼 ∑ 𝑤𝑗⎹𝛽𝑗⎹ + (1 − 𝛼)𝑝
𝑗=1 ||𝛽||2

2)  is the Elastic-Net penalty with 

adaptive weights wj 

i.e 

𝛽 = arg 𝑚𝑖𝑛 {
1

2𝑛
∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

 )

2
𝑛

𝑖=1

+ 𝜆1 ∑  𝑤𝑗⎹𝛽𝑗| + 𝜆2

𝑝

𝑗=1

 ∑  𝛽2
𝑗
| + 𝜆3

𝑝

𝑗=1

∑  |⎹𝛽𝑔|

𝐺

𝑔=1

 |2} 
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Where: 

Yi is the response variable for the iiith observation. 

Xij is the value of the jth predictor variable for the iii-th observation. 

Βj are the coefficients of the regression model. 

Wj are adaptive weights, typically set as wj=1 / ∣𝛽𝑂𝐿𝑆
𝑗
  

λ1, λ2, λ3≥0 are regularization parameters controlling the strength of the LASSO, 

Ridge, and Group LASSO penalties 

Rationale for Each Components 

1. Elastic Net Component: 

i. Purpose: Mitigates the instability in variable selection caused by 

LASSO when dealing with highly correlated predictors. 

ii. Impact: By combining ℓ1-norm (LASSO) and ℓ2-norm (Ridge) 

penalties, the Elastic Net encourages a more stable selection of 

correlated predictors, reducing the variance of the model without 

completely discarding relevant variables. 

2. Adaptive Weights: 

i. Purpose: Addresses the bias introduced by standard LASSO by allowing 

different levels of shrinkage for different coefficients. 

ii. Impact: Adaptive weights reduce shrinkage on large coefficients, 

leading to less biased estimates. This is particularly useful in cases 

where some predictors have a stronger relationship with the response 

variable than others. 

3. Group LASSO Component: 

i. Purpose: Enables the selection of entire groups of predictors, which is 

useful when variables are naturally grouped (e.g., genes, time series). 

ii. Impact: Group LASSO allows for group-wise sparsity, ensuring that 

entire groups of variables can be included or excluded, which is 

beneficial in settings where predictors are logically or structurally 

grouped. 

 Expected Benefits of AWENGL 

1. Improved Variable Selection: 

Benefit: AWENGL is expected to select variables more effectively by 

reducing bias and handling correlated variables more stably. This leads to 

models that better represent the underlying data structure. 
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2. Enhanced Predictive Accuracy: 

Benefit: By combining multiple regularization techniques, AWENGL can 

produce models with lower prediction error, particularly in high-

dimensional settings where traditional LASSO might over fit or under-fit. 

3. Flexibility in Handling Different Data Structures: 

Benefit: The inclusion of group LASSO allows AWENGL to be applied in 

a broader range of scenarios, including those where predictors are naturally 

grouped, leading to more interpretable models. 

4. Reduction of Over-fitting: 

Benefit: The Ridge component of Elastic Net, along with adaptive weights, 

helps in reducing over-fitting, especially in datasets with a high number of 

predictors relative to observations. 

5. Applicability to High-Dimensional Data: 

Benefit: AWENGL is particularly suited for high-dimensional datasets (e.g., 

genomics, image processing) where the number of predictors far exceeds 

the number of observations, ensuring that the model remains robust and 

interpretable. 

CONCLUSION  

This study advanced the regression modeling techniques for high-dimensional data by 

developing an extended LASSO model to improve variable selection in high-

dimensional datasets. Our model hypothesized that the extended LASSO technique will 

outperform existing models, such as standard LASSO, Ridge regression, and Elastic 

Net, in terms of prediction accuracy, variable selection, and computational efficiency. 

Furthermore, the study posits that the extended LASSO algorithm will effectively 

address key challenges in high-dimensional data analysis, including multicollinearity 

and over-fitting.  
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