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ABSTRACT: This research aimed to develop an ARIMA(1,0,11) model for forecasting inflation 

rates in Kenya. The research utilized historical inflation data from January 2005 to August 2022 

to develop the model and evaluated its performance on a test set spanning from September 2022 

to August 2023. The results demonstrated that the ARIMA model provided accurate forecasts, with 

low forecast errors in terms of MSE, RMSE, MAE, and MAPE. These forecasts have practical 

utility for various stakeholders, including policymakers, businesses, and financial institutions, as 

they can use the information to inform pricing strategies, interest rate policies, and other economic 

decisions. Additionally, the study highlighted the importance of data quality, continuous 

monitoring of economic factors, and periodic model refinement to ensure the effectiveness of 

inflation forecasting in a dynamic economic environment. 
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INTRODUTION 

Inflation refers to the sustained rise in the overall cost of goods and services in an economy over 

a certain period of time. Inflation is a crucial economic indicator that reflects the purchasing power 

of consumers, and central banks and policymakers rely on accurate forecasts of inflation to make 

informed monetary policy decisions. The inflation rate is usually expressed as an annual 

percentage change, and it is essential to measure inflation in order to monitor changes in the cost 

of living and the overall health of an economy. 

In Kenya, the inflation rate has been fluctuating over the years, and this trend has prompted 

economists to investigate the best methods for forecasting inflation. Several studies have been 

conducted in recent years to Predict and estimate the rate of inflation in Kenya using different 

techniques, such as Seasonal Autoregressive Integrated Moving Average (SARIMA), 

Autoregressive Integrated Moving Average (ARIMA), Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) and ARIMA-GARCH models. 
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The research of inflation forecasting is crucial in the field of economics, and several techniques 

have been developed to predict and estimate the rate of inflation. In Kenya, the inflation rate has 

been fluctuating over the years, and there is a need for accurate forecasts to support monetary 

policy decisions. The objective of this research is to develop a forecasting model for the inflation 

rate in Kenya using ARIMA. The ultimate goal is to evaluate the effectiveness of the model in 

forecasting inflation rates. 

LIMITATIONS 

The research aimed at predicting the inflation rate in Kenya has several limitations. Firstly, the 

research heavily relied on the availability of accurate and reliable data. Any inaccuracies or 

missing data points can compromise the accuracy of the forecast. Secondly, the ARIMA model 

used in the study was based on certain assumptions, such as the stationarity of the inflation rate 

data and the representativeness of the data used. If these assumptions are not met, the accuracy of 

the model may be impacted. Lastly, inflation rate is a dynamic phenomenon that changes over time 

and is influenced by various factors. As a result, the model may not be able to accurately forecast 

future inflation rates if the underlying factors change. 

1.0 LITERATURE REVIEW 

Inflation and its Impacts 

Inflation, a crucial economic indicator, reflects the decrease in the purchasing power of money as 

prices of goods and services increase over time. Its impact is significant, directly influencing the 

overall economic health. Low and predictable inflation rates can foster economic growth, while 

high and volatile inflation rates create uncertainty, affecting savings and investments. Therefore, 

accurately predicting inflation is vital for policymakers and stakeholders in making informed 

decisions to mitigate the adverse effects and promote economic stability (Blanchard, 2017) 

(Fischer & Modigliani, 1978). 

Kenya, like most developing countries, is vulnerable to high inflation rates due to factors such as 

currency devaluation, increased demand for goods and services, and supply chain disruptions. As 

such, forecasting inflation is crucial for policymakers, financial institutions, and other investors 

who wish to make informed decisions. This project aims to develop an ARIMA-ANN model for 

modelling and predicting inflation in Kenya. This model will integrate statistical and machine 

learning techniques to improve the accuracy of inflation forecasts. 

Predicting inflation in Kenya is essential for several reasons. Firstly, it helps policymakers to 

develop effective monetary policies and make appropriate budgetary allocations. Secondly, it helps 

businesses and investors make informed decisions by enabling them to anticipate market trends 

and conditions. Finally, predicting inflation helps individuals plan their finances better by 

anticipating the impact of inflation on their purchasing power. 
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There are several models that economists and policymakers use to predict inflation. Some of these 

models include ANN, ARIMA, and Vector Autoregression (VAR). 

ARIMA Model in Forecasting 

Various statistical and econometric models have been used over time in forecasting time series 

data. Among these, ARIMA models are one of the most popular due to their simplicity and ability 

to model linear relationships. ARIMA models capture patterns and structures in the historical data 

to make forecasts (Box & Jenkins, 1970). However, ARIMA models work on the assumption that 

the variables are linear and follow a specific distribution, which is often not the case in real-world 

situations. 

ARIMA Model in Inflation Forecasting 

ARIMA models are a popular approach for forecasting inflation rates in many countries. They 

have been widely used to study the behavior of inflation rates over time and to predict future 

inflation rates. Several studies have explored the use of ARIMA models to predict inflation rates 

in various countries, such as Sudan, Ireland, and Nigeria. 

Meyler, Kenny, & Quinn, (1998) also used ARIMA models to forecast inflation rates, this time in 

Ireland. The authors found that the ARIMA models provided reasonable forecasts and 

outperformed a number of alternative forecasting methods. This result indicates that ARIMA 

models can be useful for predicting inflation rates in countries with low or moderate inflation rates. 

Adelekan, Abiola, & Constance, (2020) applied ARIMA models to the task of forecasting Nigeria's 

inflation rates. The authors found that the ARIMA models provided reasonable forecasts, although 

the accuracy of the forecasts varied depending on the specific model used. The authors noted that 

the ARIMA models performed better when they were trained on longer time series of historical 

data. 

One study by (Abdulrahman, Ahmed, & Abdellah, 2018) used ARIMA models to forecast inflation 

rates in Sudan. The authors found that the ARIMA model provided a good fit for the data and was 

able to accurately predict future inflation rates. This result suggests that ARIMA models can be 

useful for predicting inflation rates in countries with high inflation rates. 

METHODOOGY 

Research Design 

The research design for this research was a quantitative research design. This is because the 

research seeks to collect and analyze numerical data to identify patterns and relationships between 

observations, and to develop a forecasting model. 
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Quantitative research is a method of empirical investigation that seeks to measure, quantify, and 

analyze data using statistical and mathematical methods. This method is suitable for research 

questions that require the collection and analysis of numerical data, and for questions that seek to 

identify patterns, relationships, or causal links between variables. 

The choice of a quantitative research design was justified by the nature of the research question, 

which seeks to develop a forecasting model to predict inflation rates in Kenya. According to 

(Creswell & Creswell, 2017), forecasting models are typically developed using quantitative 

research methods that involve the analysis of time series data to identify the patterns and trends 

over time. Additionally, the use of statistical and mathematical methods such as ARIMA is also 

common in quantitative research designs for forecasting.  

Target Population 

The target population for this research was the population of Kenya as a whole. The research would 

seek to understand and predict changes in the inflation rate over time, which affects the cost of 

living and economic conditions for everyone in the country. It specifically include economists and 

policymakers responsible for formulating and implementing economic policies in Kenya, investors 

interested in making investment decisions in Kenya or in industries that are affected by inflation, 

business owners and managers who need to understand the impact of inflation on their operations, 

such as pricing decisions and production costs, researchers and academics studying 

macroeconomic trends and forecasting techniques, and students studying economics or related 

fields who are interested in learning about forecasting techniques and their applications. 

Essentially, anyone interested in understanding or predicting inflation in Kenya could potentially 

benefit from the insights provided by the modeling and prediction results of this research project. 

Sampling Frame and Sampling Technique 

The sampling frame for this research was the population of inflation rate data points collected by 

the Central Bank of Kenya from the year 2005 to 2023. Specifically, the sampling frame would 

consist of all monthly inflation rate data points for this time period. 

As this research was using the entire population of data points, there was no need for sampling 

techniques. Therefore, no sampling technique was necessary or applicable for this research. 

Since the research intended to analyze the entire population of inflation rate data points, the 

research was considered a census, rather than a sample. A census is a study in which all elements 

or members of a population are included, whereas a sample is a subset of a population that is 

selected for analysis. Therefore, in this case, the sampling frame was the entire population of data 

points and therefore the research was a census. 
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Building the model 

An ARIMA model is a traditional time series model that is used to capture linear patterns and 

trends in time-series data. In this article, we will provide a methodology for building an ARIMA 

model for univariate time-series data. 

Data preparation 

The first step in building an ARIMA model was to prepare the data. This involved several steps, 

including collecting data from the relevant source, data cleaning by checking and correcting any 

errors or inconsistencies in the data, data splitting by splitting the data into training and testing 

sets. The training set was used to build the model, while the testing set was used to evaluate how 

the model performed. 

ARIMA Model Building 

The next step was to build an ARIMA model. The ARIMA model consisted of three components: 

the autoregressive (AR) component, the integrated (I) component, and the moving average (MA) 

component. 

The AR component was used to capture the linear relationship between the current observation 

and previous observations. The AR component was denoted by p and was represented by the 

following equation: 

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜖𝑡 

 

Where, 𝑦𝑡 is the value of the time series at time t, 𝑐 is the constant term, 𝜙1, 𝜙2, . . . , 𝜙𝑝 are 

the AR coefficients, p is the order of the AR component and 𝜖𝑡 is the error term at time t. 

Integrated (I) component was used to capture the non-stationarity in the data. Non-stationarity 

means that the statistical properties of the data change over time. The I component is denoted 

by d and can be represented by differencing the time series data until it becomes stationary. 

Mathematically, the differenced series is denoted as y′, and it can be represented as: 

𝑦′ =  𝑦𝑡  −  𝑦𝑡−1 

The Moving Average (MA) component was used to capture the linear relationship between the 

current observation and previous error terms. The MA component was denoted by q and was 

represented by the following equation: 

 

𝑦′ =  𝑐′ +  𝜀′𝑡  +  𝜃1𝜀𝑡−1 +  𝜃2𝜀𝑡−2+ . . . + 𝜃𝑞𝜀𝑡−𝑞 

 

Where 𝜃1, 𝜃2, … , 𝜃𝑞 are the moving average coefficients, 𝜀𝑡−1, 𝜀𝑡−2 . . . , 𝜀𝑡−𝑞 are the past 

forecast errors, and 𝜀′𝑡  is the current forecast error term at time t. 
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By combining the AR, I, and MA components, the general equation for the ARIMA (p, d, q) 

model was written as: 

𝑊𝑡 = 𝜙𝑡𝑊𝑡−1 + . . . + 𝜙𝑝𝑊𝑡−𝑝  +  𝑐 +  𝜀𝑡 +  𝜃1𝜀𝑡−1+ . . . + 𝜃𝑞𝜀𝑡−𝑞 

Where 𝑊𝑡  =  (1 −  𝐵)𝑑𝑦𝑡, 𝑦𝑡 are the actual observations and 𝜀𝑡 is the white noise at time 

𝑡~ 𝑊𝑁 (0, 𝜎2) 

The model can be shortened using the backward shift operator (B) as follows 

𝜙(𝐵)(1 −  𝐵)𝑑𝑦𝑡  =  𝑐 +  𝜃(𝐵)𝜀𝑡 

 

Where 𝜙(𝐵)  =  1 −  𝜙1𝐵 −  𝜙2𝐵2 − . . . − 𝜙𝑝𝐵𝑝 and 𝜃(𝐵)  =  1 +  𝜃1𝐵 +

 𝜃2𝐵2 + . . . + 𝜃𝑝𝐵𝑝 are the lag polynomials, 𝜙𝑖, 𝜃𝑗𝑖 =  1, 2, . . . , 𝑝, 𝑗 =  1, 2, . . . , 𝑞 are the 

coefficients of AR(p) and MA(q), d represents the degree of ordinary differencing applied to 

make the series stationary 

 

Model Identification 

Autocorrelation (ACF) and partial autocorrelation (PACF) plots are commonly used to identify 

the orders of the AR and MA components in the ARIMA model. ACF and PACF assume 

stationarity of the underlying time series. Stationarity can be checked by performing an 

Augmented Dickey-Fuller (ADF) test. These plots depict the correlation between the time series 

observations and their lagged values. The significant spikes or decay patterns in the ACF and 

PACF plots can indicate the appropriate values of p and q. 

AR Component (p): The PACF plot helps determine the order of the AR component. Significant 

spikes in the PACF plot that gradually diminish after a certain lag suggest an AR component of 

that order. 

MA Component (q): The ACF plot helps identify the order of the MA component. Significant 

spikes in the ACF plot that gradually diminish after a certain lag indicate an MA component of 

that order. 

Differencing (d) Order: The differencing order is determined by assessing the stationarity of the 

time series data. Stationarity implies that the statistical properties of the data, such as mean and 

variance, remain constant over time. If the data exhibit trends, seasonality, or non-stationarity, 

differencing can be applied to make the series stationary. The number of differencing required to 

achieve stationarity corresponds to the value of d. 

No Differencing (d = 0): If the ACF and PACF plots show no significant pat- terns and the time 

series data appears stationary, no differencing is needed. 

First Order Differencing (d = 1): If the data show a linear trend, a first-order difference (𝑌𝑡 −  𝑌𝑡−1) 

is applied to remove the trend.  
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Seasonal Differencing: In cases of seasonal patterns, additional seasonal differencing may be 

required (for example, 𝑌𝑡  −  𝑌𝑡−𝑚 for a seasonal lag m) in addition to the regular differencing. 

Summary for ACF and PACF patterns are shown in the table below 

 

Table 1: ACF and PACF Patterns for AR, MA, and ARMA Models 

Model AR(p) MA(q) ARMA (p q) 

ACF Pattern Tails off (Geometric 

decay) 

Significant at lag q or Cuts 

off after lag q 

Tails off (Geometric 

decay) 

PACF Pattern Significant at each lag q 

or Cuts off after lag q 

Tails off (Geometric 

decay) 

Tails off (Geometric 

decay) 

 

Model Estimation 

The parameters of the ARIMA model was estimated using maximum likelihood estimation (MLE). 

The estimation of parameters in an ARIMA model involved finding the values of the 

autoregressive (AR) coefficients (𝜙1, 𝜙2, … , 𝜙𝑝) and the moving average (MA) coefficients 

(𝜃1, 𝜃2, … , 𝜃𝑞) through methods like Maximum Likelihood Estimation (MLE). Here are the 

equations for estimating these parameters: 

Estimation of AR Parameters (ϕ): 

The AR parameters were estimated using MLE. The likelihood function for an ARIMA(p, d, 

0) model is typically based on the assumption that the residuals (𝜀𝑡) are normally distributed 

with mean 0 and constant variance (𝜎2). 

  

The likelihood function for an AR(p) model is: 

𝐿(𝜙1, 𝜙2, . . . , 𝜙𝑝 | 𝑋1, 𝑋2, . . . ,  𝑋𝑇 )  

=
1

(2𝜋𝜎2)𝑇/2
𝑒𝑥𝑝 (−

1

2𝜎2
∑(𝑋𝑡  −  𝜙1𝑋𝑡−1  − 𝜙2𝑋𝑡−2 − . . . − 𝜙𝑝𝑋𝑡−𝑝)2

𝑇

𝑖=1

) 

 

To estimate the AR parameters, maximize this likelihood function with respect to 

𝜙1, 𝜙2, . . . , 𝜙𝑝. 
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Estimation of MA Parameters (θ): 

The MA parameters are also estimated using MLE. The likelihood function for an ARIMA(0, 

d, q) model with MA(q) is: 

𝐿(𝜃1, 𝜃2, . . . , 𝜃𝑞 | 𝑋1, 𝑋2, . . . ,  𝑋𝑇 )  

=
1

(2𝜋𝜎2)𝑇/2
𝑒𝑥𝑝 (−

1

2𝜎2
∑(𝑋𝑡  −  𝜃1𝜀𝑡−1  −  𝜃2𝜀𝑡−2 − . . . − 𝜃𝑝𝜀𝑡−𝑞)2

𝑇

𝑖=1

) 

To estimate the MA parameters, maximize this likelihood function with respect to 

𝜃1, 𝜃2, . . . , 𝜃𝑞, again using numerical optimization methods. 

 

Estimation of 𝝈𝟐 (Variance): 

In addition to estimating the AR and MA parameters, estimate the variance (𝜎2) of the white 

noise process 𝜀𝑡 as it appears in the likelihood functions above. The estimated 𝜎2 is often 

referred to as the residual variance and can be calculated as: 

�̂�2 =
1

𝑇
∑ 𝜀�̂�

2

𝑇

𝑖=1

 

Where 𝜀�̂� is the estimated residual at time 't'. 

Once you have estimated the AR and MA parameters along with 𝜎2, you have successfully fitted 

the ARIMA model to your inflation rate data. These parameter estimates will be used in making 

predictions and analyzing the model's performance. 

Model Diagnosis 

Model evaluation criteria such as the Akaike Information Criterion (AIC) or Bayesian Information 

Criterion (BIC) was used to compare the performance of different parameter combinations and 

select the most appropriate model. 

The AIC is given by: 

𝐴𝐼𝐶 =  −2 𝑙𝑛(𝐿)  +  2𝑘 

Where 𝑙𝑛(𝐿) is the log-likelihood of the model and k is the number of parameters in the model. 

The BIC is given by: 

𝐵𝐼𝐶 =  −2 𝑙𝑛(𝐿)  +  𝑘 𝑙𝑛(𝑛) 

 

Where 𝑙𝑛(𝐿) is the log-likelihood of the model, k is the number of parameters in the model, and n 

is the number of observations in the data. 
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Model Validation and Evaluation 

The next step was to evaluate the performance of the ARIMA model with, several performance 

metrics will be utilized. These metrics included MAE, MSE, RMSE and MAPE. These metrics 

provided insights into the accuracy and effectiveness of the model in forecasting the inflation rate 

in Kenya. 

 

The performance metrics can be calculated using the following formulas:  

Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =
1

𝑇
∑ |𝑌(𝑡) − Ŷ(𝑡)|

𝑇

𝑡=1
 

 

Mean Squared Error (MSE): 

𝑀𝑆𝐸 =
1

𝑇
∑ (𝑌(𝑡) − Ŷ(𝑡))2

𝑇

𝑡=1
 

Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 

 

Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 =   
1

𝑇
∑ (

|𝑌(𝑡)  − Ŷ(𝑡)|

𝑌(𝑡)
)

𝑇

𝑡=1
×  100 

Where 𝑌(𝑡) represented the actual inflation rate at time t and Ŷ(𝑡) represented the forecasted 

inflation rate at time t. 

The model's performance was also visualized by comparing the actual and predicted values of the 

time series. A good model should accurately capture the trends and patterns in the data and produce 

accurate and reliable forecasts. 

Forecasting 

Once the model is validated and evaluated, it can be used to make forecasts. The model can be 

used to forecast future values of the time series, and the forecasts can be used to make informed 

decisions. The model is given by the equation below: 

 

𝑦(𝑡) = 𝑐 + 𝜙1𝑦(𝑡−1) + 𝜙2𝑦(𝑡−2) + ⋯ + 𝜙𝑝𝑦(𝑡−𝑝) + 𝜖(𝑡) + 𝜃1𝜖(𝑡−1) + 𝜃2𝜖(𝑡−2) + ⋯

+ 𝜃𝑞𝜖(𝑡−𝑞) 
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Where 𝑦(𝑡) is the output at time t, 𝑐 is the constant term, 𝜙1, 𝜙2, … , 𝜙𝑝 are the AR coefficients, 

𝜃1, 𝜃2, … , 𝜃𝑞 are the MA coefficients and 𝜖(𝑡) is the error term at time t. 

 

RESULTS AND DISCUSSION 

Inflation data was divided into training and test set. The training set had data point of inflation rate 

from January 2005 to August 2022 and was used to develop the models. The test set had data point 

of inflation rate from September 2022 to August 2023 and was used to check the accuracy of the 

developed models. 

Stationarity Check 

One of the assumptions was that the data had to be stationary hence the need for a stationarity test. 

If the data was not stationary, then differencing was to be done until the data was stationary for 

analysis to be done. 

Table 2: Augmented Dickey-Fuller Test 

test statistic p-value 

Augmented Dickey-Fuller Test -3.53630 0.00710 

 

An Augmented Dickey-Fuller (ADF) test was performed to assess the stationarity of the 

inflation time series data. The test indicated a Dickey-Fuller value of -3.53630 (p = 0.00710). 

The calculated p-value being below the significance level (α = 0.05) suggested that the data 

was stationary. 
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ARIMA Model Selection 

 
Figure 1: ACF and PACF Plots 

There was a gradual decay in the ACF values and they became less significant as the lags 

increased. This suggested a potential non-seasonal MA(q) component. There was a significant 

spike at lag 1 in the PACF plot, which suggested a potential first-order AR term (p=1). Based 

on these observations, a consideration of an ARIMA model with the following orders: Non-

seasonal AR order (p)= 1 and Non-seasonal MA order (q)= 1 

 

The initial ARIMA model could be ARIMA(1, 0, 1), and further refinement of  the model was 

required and testing for adequacy by fitting it to the inflation time series data and evaluating 

its performance using diagnostic tools like AIC and BIC criteria. Adjustment of the values of 

p, d, and q was needed to find the best-fitting model for the data. 

 

Table 3: Different ARIMA (p,d,q) fitted models 

Model AIC BIC log likelihood 

(1,0,1) 662.61 676.04 -327.31 

(1,0,5) 649.99 676.84 -316.99 

(1,0,9) 647.80 688.08 -311.90 

(1,0,11) 590.06 637.05 -281.03 

(2,0,1) 652.71 669.49 -321.35 

(3,0,1) 659.75 679.89 -323.88 

(4,0,1) 652.82 676.32 -319.41 

(5,0,1) 651.55 678.40 -317.77 

(2,0,2) 663.78 683.92 -325.89 

(3,0,2) 664.99 688.48 -325.49 

(4,0,2) 636.73 663.58 -310.36 

(5,0,2) 630.60 660.81 -306.30 

(5,0,3) 632.23 665.79 -306.11 

 

https://www.eajournals.org/


European Journal of Statistics and Probability, 11 (1), 54-68, 2023  

                                                      Print ISSN: 2055-0154(Print),  

                                                                           Online ISSN 2055-0162(Online) 

Website: https://www.eajournals.org/                                                         

                        Publication of the European Centre for Research Training and Development -UK 

65 
 

The presented table 3 showcases various ARIMA models, each characterized by their Akaike 

Information Criterion (AIC), Bayesian Information Criterion (BIC), and associated log likelihood. 

Both AIC and BIC are essential for model selection as they strike a balance between model fit and 

complexity. Lower AIC and BIC values indicate more optimal models that effectively capture the 

data's patterns while avoiding excessive complexity. 

Among the choices, the (1,0,11) ARIMA model stands out with the lowest AIC (590.06) and BIC 

(637.05) values. These values suggest that the (1,0,11) model offers a favorable compromise 

between accurately representing the data and keeping the model's complexity in check. 

Additionally, the model's log likelihood of -281.03 indicates the goodness of fit, measuring how 

well the model explains the observed data. 

In summary, while considering both AIC and BIC, the (1,0,11) ARIMA model emerges as the 

preferable choice due to its strong performance in terms of goodness of fit and model simplicity. 

 

Table 4: ARIMA Model 

Series: training data ARIMA(1,0,11) 

Coefficients: 

ar1 ma1 ma2 ma3 ma4 ma5 ma6 ma7 

0.5274 0.7022 0.6892 0.6537 0.6553 0.5959 0.6318 0.7225 

s.e. 0.0769 0.0791 0.0849 0.0760 0.0611 0.0645 0.0746 0.0783 

ma8 ma9 ma10 ma11 intercept    

0.6261 0.7797 0.6690 0.7379 7.9358    

s.e. 0.0905 0.0867 0.0677 0.0857 1.0517    

σ2 = 0.8255: log likelihood = -281.03 AIC=590.06 AICc=592.19 BIC=637.05 

 

An ARIMA model was fitted to the training set of inflation data time series. The model was 

specified as ARIMA(1,0,11) with a non-zero mean. 

The ARIMA equation for this model is given by: 

 

yt=0.5274yt−1+αt+0.7022αt−1+0.6892αt−2+0.6537αt−3+0.6553αt−4+0.5959αt−5+0.6318αt−6+0.72

25αt−7+0.7379αt−8+0.6261αt−9+0.7797αt−10+0.6690αt−11+7.9358 

 

where yt represents the value of the time series at time t and αt denotes the white noise error term 

at time t. Standard errors for the coefficients are also provided (s.e.). The estimated variance of the 

error term is σ2 = 0.8255, and the log likelihood of the model is -281.03. The model selection 

criteria values are as follows: Akaike Information Criterion (AIC) = 590.06, Corrected AIC (AICc) 

= 592.19, and Bayesian Information Criterion (BIC) = 637.05. 
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Model Evaluation 

Forecasting was done using ARIMA model. The forecasted values were then compared to the 

testing set which consisted of inflation rates from September 2022 to August 2023.  

Table 5: Actual Data against Forecasted Data 

Date Actual ARIMA 

Sep 2022 9.18 8.682 

Oct 2022 9.59 9.138 

Nov 2022 9.48 9.698 

Dec 2022 9.06 9.863 

Jan 2023 8.98 10.377 

Feb 2023 9.23 11.109 

Mar 2023 9.19 10.597 

Apr 2023 7.90 9.574 

May 2023 8.03 9.151 

Jun 2023 7.88 8.302 

Jul 2023 7.28 7.760 

Aug 2023 6.73 7.763 

 

A comparison between the actual inflation rates and the forecasted inflation rates using an 

ARIMA(1,0,11) model. The dataset covered the period from September 2022 to August 2023. 

ARIMA model's forecasted values closely tracked the actual inflation rates over this period 

capturing the underlying patterns and trends in the data. This was shown in figure 1 below.  

 
Figure 2: Actual Data verses ARIMA Forecast 
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Table 6: Model Evaluation 

Model MSE RMSE MAE MAPE(%) 

ARIMA(1,0,11) 1.178454 1.085566 0.948745 11.248809 

 

The evaluation of the ARIMA model's performance is summarized in Table 6. The Mean 

Squared Error (MSE) was 1.178454, indicating the average squared difference between the 

actual and forecasted values. The Root Mean Squared Error (RMSE) of 1.085566 provided a 

measure of the standard deviation of the forecast errors, and the Mean Absolute Error (MAE) 

of 0.948745 represented the average absolute difference between the actual and predicted 

values. Additionally, the Mean Absolute Percentage Error (MAPE) of 11.248809% gave an 

insight into the relative accuracy of the model's predictions. This showed that the model 

exhibited relatively low forecast errors across multiple evaluation metrics 

Forecasting    

Table 7: Future Forecasted Inflation   

 

Date 

Point 

Forecast 

95% CI Lower 

Bound 

95% CI Upper 

Bound 

Sep 2023 6.257859 4.50699243 8.008726 

Oct 2023 6.131388 3.34787700 8.914899 

Nov 2023 6.519684 2.86243274 10.176935 

Dec 2023 7.056191 2.66875865 11.443623 

Jan 2024 7.800917 2.79018237 12.811651 

Feb 2024 8.187797 2.66587965 13.709715 

Mar 2024 8.061394 2.06742789 14.055360 

Apr 2024 8.307298 1.82672878 14.787868 

May 2024 8.022959 1.05574503 14.990173 

Jun 2024 7.399966 0.02351276 14.776418 

Jul 2024 7.277673 -0.54650010 15.101847 

Aug 2024 7.554118 -0.67450410 15.782740 

 

The table 7 shows the model's future forecasts for inflation rates spanning from September 2023 

to August 2024. The significance of this table extends to its practical utility. Stakeholders, 

policymakers, and economists can draw upon these forecasted inflation rates to inform a range of 

decisions. Businesses might adjust pricing strategies, financial institutions could refine interest 

rate policies, and policymakers may consider the implications for monetary and fiscal measures. 

https://www.eajournals.org/


European Journal of Statistics and Probability, 11 (1), 54-68, 2023  

                                                      Print ISSN: 2055-0154(Print),  

                                                                           Online ISSN 2055-0162(Online) 

Website: https://www.eajournals.org/                                                         

                        Publication of the European Centre for Research Training and Development -UK 

68 
 

This forward-looking analysis supports informed planning and proactive responses to anticipated 

economic conditions. 

CONCLUSION 

Inflation forecasting is a critical element in economic analysis and policymaking, and this study 

focused on developing an ARIMA(1,0,11) model to predict inflation rates in Kenya. The results 

indicate that the ARIMA model performed well in capturing the underlying patterns and trends in 

the inflation data. The model's forecasts closely tracked the actual inflation rates, as evidenced by 

low forecast errors in terms of MSE, RMSE, MAE, and MAPE. 

RECOMMENDATION 

Continuous Monitoring: Inflation is influenced by various factors that can change over time. 

Policymakers and economists should continuously monitor these factors and update the model as 

needed to reflect changing economic conditions. 

Model Refinement: While the ARIMA(1,0,11) model performed well in this study, it's important 

to periodically reassess the model's performance and consider alternative modeling techniques if 

necessary. Economic dynamics can evolve, and a different model structure may become more 

suitable in the future. 

Policy Implications: The forecasted inflation rates can be used by policymakers to make informed 

decisions regarding monetary policy, interest rates, and fiscal measures. It's essential to consider 

the implications of forecasted inflation on the overall economy and adjust policies accordingly. 

 

REERENCES 

Abdulrahman, B. M. A., Ahmed, A. Y. A., & Abdellah, A. E. Y. (2018). Forecasting of sudan 

inflation rates using arima model. International Journal of Economics and Financial 

Issues, 8 (3), 17. 

Adelekan, O. G., Abiola, O. H., & Constance, A. U. (2020). Modelling and forecasting inflation 

rate in nigeria using arima models. KASU Journal of Mathematical Science, 1 (2), 127-

143. 

Blanchard, O. (2017). Macroeconomics. Pearson. 

Box, G. E., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. San Francisco: 

Holden-Day. 

Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed 

methods approaches. Sage publications. 

Fischer, S., & Modigliani, F. (1978). Towards an understanding of the real effects and costs of 

inflation. Weltwirtschaftliches Archiv, 114 (4), 810-833. 

Meyler, A., Kenny, G., & Quinn, T. (1998). Forecasting irish inflation using arima models. 

 

https://www.eajournals.org/

