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Abstract: This study presents closed-form analytical and numerical solutions for both steady and transi-

ent free convection flow of a nanofluid in a vertical channel. The mathematical model is based on the 

Buongiorno model, incorporating the effects of Brownian motion and thermophoresis. Exact solutions for 

the steady-state velocity, temperature, and nanoparticle concentration profiles are derived using the 

method of separation of variables. For the transient regime, a semi-analytical solution is obtained using 

the Laplace transform technique after a linearization of the governing equations. Numerical validation is 

performed using an Implicit Finite Difference Method (IFDM), with stability assured by Von Neumann 

analysis. The influence of key dimensionless parameters such as Grashof number (Gr), buoyancy ratio (Nr), 
Brownian motion (Nb), and thermophoresis (Nt) are investigated comprehensively. Results indicate that 

increasing Gr from 1 to 10 enhances the maximum velocity by 637%, while increasing Nr from 0.5 to 2.0 

dampens the flow intensity by 23%. Transient analysis reveals significant overshoots in Nusselt (Nu) and 

Sherwood (Sh) numbers, reaching up to 40% and 28% above their steady-state values, respectively, high-

lighting enhanced heat and mass transfer during the initial stages. The analytical solutions provide excel-

lent benchmarks, showing perfect agreement with numerical results and deviations of less than 1% from 

established literature. 

 

Keywords: analytical solution, free convection, heat transfer enhancement, laplace transform, 

nanofluid, transient flow, vertical channel, 

 

 

INTRODUCTION 

 

The thermal performance of conventional heat transfer fluids like water and ethylene glycol is 

inherently limited by their low thermal conductivity. The advent of nanofluids “engineered colloi-

dal suspensions of nanoparticles (1–100 nm) in base fluids” has opened new frontiers in thermal 

management, offering enhancements in thermal conductivity of up to 40% [1]. The pioneering 

work of Choi [2] first introduced the concept of nanofluids. Subsequent model by Buongiorno [3], 
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which identified Brownian diffusion and thermophoresis as the primary slip mechanisms, laid the 

foundation for understanding nanofluid dynamics. 

 

Free convection in vertical channels is a fundamental configuration with widespread applications 

in electronics cooling, solar energy systems, and building ventilation. While numerous studies 

have investigated steady-state convection [4, 5], the analysis of transient behavior remains rela-

tively scarce, despite its critical importance for systems subject to startup, shutdown, or fluctuating 

thermal loads. Most existing studies rely heavily on numerical simulations [6], with a notable lack 

of closed-form analytical solutions, particularly for the transient regime. Such analytical solutions 

are indispensable for validating numerical codes and gaining deeper physical insights into the cou-

pled dynamics of heat and mass transfer. 

 

Grosan and Pop [7] provided analytical solutions for mixed convection in a vertical channel, but 

their focus was on steady-state conditions. Studies addressing transient nanofluid flow often em-

ploy full numerical approaches [8], leaving a gap for verifiable analytical frameworks. The present 

study aims to bridge this gap by deriving exact analytical solutions for both steady and transient 

free convection in a vertical channel. 

 

The key objectives of this work are: 

 

i. To formulate and solve the steady-state governing equations analytically using separation 

of variables. 

ii. To develop a semi-analytical solution for the transient governing equations using the La-

place transform method. 

iii. To validate the analytical solutions with a numerical scheme based on the Implicit Finite 

Difference Method (IFDM). 

iv. To conduct a comprehensive parametric study on the influence of Gr, Nr, Nb, and Nt on the 

flow, thermal, and concentration fields, as well as on the heat and mass transfer rates. 

 

Mathematical Formulation 

 

Physical Model and Governing Equations 
Consider a laminar, incompressible flow of a nanofluid between two infinite vertical parallel plates 

separated by a distance L. The coordinate system is chosen such that the 𝑥-axis is aligned vertically 

against gravity, and the 𝑦-axis is perpendicular to the channel walls, located at 𝑦 = 0 and 𝑦 = 𝐿. 

The temperatures and nanoparticle concentrations at the walls are maintained at (T₁, C₁) and 

(T₂, C₂), respectively, with T₂ >  T₁. The flow is driven solely by buoyancy forces (free convec-

tion). 

https://www.eajournals.org/
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Fig. 1: Physical Configuration of the Flow 

Under the Oberbeck-Boussinesq approximation and assuming a dilute nanoparticle concentration, 

the dimensional governing equations for mass, momentum, energy, and nanoparticle concentration 

are: 

𝛻 ⋅ 𝒗 = 0            (1)  

𝜌𝑓 (
𝜕𝑣

𝜕𝑡
+ 𝒗 ⋅ 𝛻𝒗) = −𝛻𝑝 + 𝜇𝛻2𝒗 + [(𝜌𝑝 − 𝜌𝑓0)(𝐶 − 𝐶0) − (1 − 𝐶0)𝜌𝑓0𝛽(𝑇 − 𝑇0)]𝒈 (2) 

(𝜌𝑐)𝑓 (
𝜕𝑇

𝜕𝑡
+ 𝒗 ⋅ 𝛻𝑻) = 𝑘𝛻2𝑻 + (𝜌𝑐)𝑝 [𝐷𝐵𝛻𝐶 ⋅ 𝛻𝑻 +

𝐷𝑇

𝑇0
𝛻𝑻 ⋅ 𝛻𝑻]          (3) 

𝜕𝐶

𝜕𝑡
+ 𝒗 ⋅ 𝛻𝐶 = 𝐷𝐵𝛻

2𝐶 +
𝐷𝑇

𝑇 0
𝛻2𝑻           (4) 

To derive the simplified governing equations for the present problem, we introduce the following 

key assumptions: 

1. Fully Developed Flow: The flow is hydrodynamically and thermally fully developed. This im-

plies that the velocity and temperature profiles do not change in the primary flow direction (x-

direction). Hence, the derivatives with respect to xx vanish 
𝜕𝑢

𝜕𝑥
= 0,

𝜕𝑇

𝜕𝑥
= 0,

𝜕𝐶

𝜕𝑥
= 0                                               (5) 

Consequently, the velocity field reduces to 𝑣 = (𝑢(𝑦), 0). 
2. Parallel Plates and Constant Pressure Gradient: For free convection between infinite vertical 

parallel plates driven solely by buoyancy, the pressure gradient in the y-direction is zero (
𝜕𝑝

𝜕𝑦
=

https://www.eajournals.org/
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0), and the axial pressure gradient 
𝜕𝑝

𝜕𝑥
 is constant. For the case of no imposed pressure gradient, 

this constant is zero. 

3. Linearization of the Buoyancy Term: The Boussinesq approximation is applied, and the buoy-

ancy term in the momentum equation is linearized. We define the reference state (𝑇0, 𝐶0) as the 

average of the boundary conditions (𝑇0 =
𝑇1+𝑇2

2
 and 𝐶0 =

𝐶1+𝐶2

2
). The density variation is ap-

proximated as 

𝜌 − 𝜌𝑓0 ≈ −𝜌𝑓0𝛽(𝑇 − 𝑇0) + (𝜌𝑝 − 𝜌𝑓0)(𝐶 − 𝐶0)                                  (6) 

where the term 𝐶0𝛽(𝑇 − 𝑇0) is neglected for dilute nanoparticle concentrations. 

Applying these assumptions to the general governing equations (1)-(4), the continuity equation (1) 

is identically satisfied. The x-component of the momentum equation (2) simplifies significantly. 

The transient and convective terms (
𝜕𝑢

𝜕𝑡
 and 𝒗 ⋅ 𝛻𝒗) vanish due to the steady-state and fully devel-

oped assumptions. The pressure gradient 
𝜕𝑝

𝜕𝑥
 is zero for pure free convection. Thus, the momentum 

equation reduces to a balance between viscous forces and buoyancy forces. And under the fully 

developed flow assumption, the energy equation (3) and concentration equation (4) lose their tran-

sient and axial advection terms. The resulting equations, which now consider diffusion and the 

cross-coupling terms of Brownian motion and thermophoresis in the y-direction, are given by 

Equations (8) and (9), respectively. 

 

𝜇
𝑑2𝑢

𝑑𝑦2
+ [(1 − 𝐶0)𝜌𝑓0𝛽(𝑇 − 𝑇0) − (𝜌𝑓 − 𝜌𝑓0)(𝐶 − 𝐶0)]𝑔 = 0                          (7) 

𝑘
𝑑2𝑇

𝑑𝑦2
+ (𝜌𝑐)𝑝 [𝐷𝐵

𝑑𝐶

𝑑𝑦

𝑑𝑇

𝑑𝑦
+ (

𝐷𝑇

𝑇0
) (

𝑑𝑇

𝑑𝑦
)
2

] = 0                                 (8) 

𝐷𝐵
𝑑2𝐶

𝑑𝑦2
+ (

𝐷𝑇

𝑇0
)
𝑑2𝑇

𝑑𝑦2
= 0                                                       (9) 

and are subjected to the boundary conditions 
𝑢 = 0, 𝑇 = 𝑇1, 𝐶 = 𝐶1       at 𝑦 = 0 
𝑢 = 0, 𝑇 = 𝑇2, 𝐶 = 𝐶2       at 𝑦 = 𝐿 

}                                         (10) 

introducing the following dimensionless variables 

𝑌 =
𝑦

𝐿
, 𝑈(𝑌) =

𝑢(𝑦)

𝑢0
, 𝑃(𝑌) =

𝑝(𝑦)

𝜌𝑢0
2    

𝜃(𝑌) =
(𝑇−𝑇0)

(𝑇2−𝑇0)
, ∅(𝑌) =

(𝐶−𝐶0)

(𝐶2−𝐶0)

}                                  (11) 

Steady-State Dimensionless Equations 
For fully developed steady-state flow, the governing equations reduce to the following dimension-

less forms, introducing the dimensionless variables in Eq. (11): 
𝑑2𝑈

𝑑𝑌2
+ 𝐺𝑟 𝜃(𝑌) − 𝑁𝑟 𝜙(𝑌) = 0      (12) 

𝑑2𝜃

𝑑𝑌2
+ 𝑃𝑟 [𝑁𝑏

𝑑𝜙

𝑑𝑌

𝑑𝜃

𝑑𝑌
+𝑁𝑡 (

𝑑𝜃

𝑑𝑌
)
2

] = 0     (13)  

𝑑2𝜙

𝑑𝑌2
+

𝑁𝑡

𝑁𝑏

𝑑2𝜃

𝑑𝑌2
= 0      (14)  

The corresponding boundary conditions are: 

https://www.eajournals.org/
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𝑈(0) = 0, 𝜃(0) = −1, 𝜙(0) = −1

𝑈(1) = 0, 𝜃(1) = 1, 𝜙(1) = 1
     }      (15) 

The dimensionless parameters are defined as: 

𝐺𝑟 =
(1−𝐶0)𝑔𝛽(𝑇2−𝑇0)𝐿

3

𝜈2
,   𝑁𝑟 =

(𝜌𝑝−𝜌𝑓)𝑔(𝐶2−𝐶0)𝐿
2

𝜇𝑢0
, 𝑃𝑟 =

𝜈

𝛼

𝑁𝑏 =
(𝜌𝑐)𝑝𝐷𝐵(𝐶2−𝐶0)

(𝜌𝑐)𝑓𝛼
, 𝑁𝑡 =

(𝜌𝑐)𝑝𝐷𝑇(𝑇2−𝑇0)

(𝜌𝑐)𝑓𝛼𝑇0

   }   (16) 

Transient Dimensionless Equations 
The dimensionless transient governing equations are: 

𝜕𝑈

𝜕𝜏
=

𝜕2𝑈

𝜕𝑌2
+ 𝐺𝑟 𝜃(𝑌, 𝜏) + 𝑁𝑟 𝜙(𝑌, 𝜏)     (17) 

𝜕𝜃

𝜕𝜏
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑌2
+
𝑁𝑏

𝑃𝑟

𝜕𝜙

𝜕𝑌

𝜕𝜃

𝜕𝑌
+
𝑁𝑡

𝑃𝑟
(
𝜕𝜃

𝜕𝑌
)
2

     (18) 

𝜕𝜙

𝜕𝜏
=

1

𝐿𝑒

𝜕2𝜙

𝜕𝑌2
+

1

𝐿𝑒

𝑁𝑡

𝑁𝑏

𝜕2𝜃

𝜕𝑌2
     (19) 

The initial and boundary conditions are: 

𝑈(𝑌, 0) = 0, 𝜃(𝑌, 0) = 𝜃0(𝑌), 𝜙(𝑌, 0) = 𝜙0(𝑌)

𝑈(0, 𝜏) = 0, 𝜃(0, 𝜏) = −1, 𝜙(0, 𝜏) = −1

𝑈(1, 𝜏) = 0, 𝜃(1, 𝜏) = 1, 𝜙(1, 𝜏) = 1

       }     (20) 

 

SOLUTION METHODOLOGY 

 

Steady-State Analytical Solution 
The coupled system of Equations (12)-(14) is solved analytically. Integrating Eq. (14) twice yields 

a linear relationship between concentration and temperature: 

𝜙(𝑌) = −
𝑁𝑡

𝑁𝑏
𝜃(𝑌) + 𝐴𝑌 + 𝐵     (21) 

where constants A and B are determined from boundary conditions. 

Substituting Eq. (21) into Eq. (13) simplifies the energy equation to a linear second-order ODE: 
𝑑2𝜃

𝑑𝑌2
+ 𝑃𝑟 𝑁𝑏 𝐴

𝑑𝜃

𝑑𝑌
= 0     (22) 

Solving Eq. (22) and applying boundary conditions gives the temperature profile: 

𝜃(𝑌) = 𝐶3 + 𝐶4𝑒
−𝐶2𝑃𝑟𝑌     (23) 

where C₂ =  Nb A, and C₃, C₄ are integration constants. 

The concentration profile is then obtained from Eq. (21) 

𝜙(𝑌) = −
𝑁𝑡

𝑁𝑏
(𝐶3 + 𝐶4𝑒

−𝐶2𝑃𝑟𝑌) + 𝐶1𝑌 −
𝐶1

2
     (24) 

and the velocity profile is found by integrating the momentum equation (12): 

𝑈(𝑌) =
𝐶5

𝐶2
2𝑃𝑟2

  + [
𝐶7

2
+
𝐶6

6
−

𝐶5

𝐶2
2𝑃𝑟2

+
𝐶5

𝐶2
2𝑃𝑟2

𝑒−𝐶2𝑃𝑟] 𝑌 −
𝐶7

2
𝑌2 −

𝐶6

6
𝑌3 −

𝐶5

𝐶2
2𝑃𝑟2

𝑒−𝐶2𝑃𝑟𝑌 (25) 

The constants C₁ to C₇ are defined in terms of Gr, Nr, Nb, Nt, and Pr as  

https://www.eajournals.org/
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𝐶1 = 2(1 +
𝑁𝑡

𝑁𝑏
) , 𝐶2 = 𝑁𝑏𝐶1, 𝐶3 =

(𝑒𝐶2𝑃𝑟+1)

(𝑒𝐶2𝑃𝑟−1)

𝐶4 = −
2𝑒𝐶2𝑃𝑟

(𝑒𝐶2𝑃𝑟−1)
, 𝐶5 = 𝐶4 (𝐺𝑟 + 𝑁𝑟

𝑁𝑡

𝑁𝑏
) , 𝐶6 = −𝑁𝑟𝐶1,

𝐶7 = 𝐶3 (𝐺𝑟 + 𝑁𝑟
𝑁𝑡

𝑁𝑏
) +

𝑁𝑟𝐶1

2

     

}
 
 

 
 

       (26) 

The Nusselt and Sherwood numbers at the left wall (Y=0) are: 
𝑁𝑢 = −𝜃′(0) = 𝐶4𝐶2𝑃𝑟

𝑆ℎ = −𝜙′(0) = −(
𝑁𝑡

𝑁𝑏
𝐶4𝐶2𝑃𝑟 + 𝐶1)

  }           (27) 

 

Transient Semi-Analytical Solution 
The nonlinear transient system (Eqs. 17-19) is linearized to make the Laplace transform technique 

tractable. The nonlinear terms in the energy equation are approximated around the initial steady-

state profiles, θ₀(Y) and ϕ₀(Y). The concentration equation is postulated to maintain the linear 

form of Eq. (21) during the transient. 

Applying the Laplace transform, the system is solved in the s-domain. The inverse transform yields 

the transient solutions: 

𝜃(𝑌, 𝜏) = 𝜃0 + ∑ 𝐴𝑛 sin(𝑛𝜋𝑌)
∞
𝑛=1 𝑒−𝜆𝑛𝜏    (28) 

where 𝜆𝑛 =
𝑛2𝜋2

𝑃𝑟
+
𝑁𝑏𝑛𝜋

𝑃𝑟

𝑑𝜙0

𝑑𝑌
 

𝜙(𝑌, 𝜏) = 𝜙0 −
𝑁𝑡

𝑁𝑏
∑ 𝐴𝑛 sin(𝑛𝜋𝑌)
∞
𝑛=1 𝑒−𝜆𝑛𝜏    (29)  

𝑈(𝑌, 𝜏) = 𝑈0 + ∑ [𝐵𝑛 sin(𝑛𝜋𝑌) 𝑒
−𝑛2𝜋2𝜏 + 𝐶𝑛 sin(𝑛𝜋𝑌) (1 − 𝑒

−𝜆𝑛𝜏)]∞
𝑛=1    (30) 

Coefficients Aₙ, Bₙ, Cₙ are determined from initial conditions and orthogonality. 

 

Numerical Solution 
 

An Implicit Finite Difference Method (IFDM) is employed to solve the full, nonlinear governing 

equations, providing a benchmark for the analytical solutions. The discretized equations form a 

tridiagonal system solved using the Thomas algorithm. A grid independence study established an 

optimal grid size of 𝑁 = 161 (𝛥𝑌 = 0.0063). Von Neumann analysis confirmed the uncondi-

tional stability of the implicit scheme. 

 

RESULTS AND DISCUSSION 

 

Validation and Grid Independence 
The numerical model was rigorously validated. A grid independence study (Table 1) showed that 

a grid of 𝑁 = 161 nodes provides a solution independent of mesh size. Benchmarking against 

Kuznetsov & Nield [4] for a vertical plate and Sarki & Buhari [5] for a vertical channel showed 

excellent agreement, with maximum deviations of 0.78% and 0.96%, respectively as shown in 

https://www.eajournals.org/
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table (2 and 3). The transient analytical and numerical solutions showed perfect convergence (Ta-

ble 4), with errors on the order of 10⁻⁶. 
 

Table 1: Grid Independence Study (𝐺𝑟 = 5,𝑁𝑟 = 0.5, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1, 𝑃𝑟 = 6.2) 

Grid N 𝜟𝒀 𝑼(𝟎. 𝟓) Rel. Error (%) Time (s) 

5 81 0.0125 0.252194 15.48 0.804 

8 161 0.0063 0.218391 0.00 1.330 

 

Table 2: Comparison with Kuznetsov & Nield (2010) Pure Free Convection Benchmark 

𝒀 Position Present Study 𝑼(𝒀) Kuznetsov & Nield 𝑼(𝒀) Deviation (%) 

𝟎. 𝟎 0.0000 0.0000 0.00 

𝟎. 𝟏 0.0894 0.0901 0.78 

𝟎. 𝟑 0.2047 0.2058 0.53 

𝟎. 𝟓 0.2452 0.2460 0.33 

𝟎. 𝟕 0.2186 0.2193 0.32 

𝟎. 𝟗 0.1128 0.1134 0.53 

𝟏. 𝟎 0.0000 0.0000 0.00 

 

 

 

 

 

 

 

Table 3: Comparison with Sarki & Buhari (2025) Analytical Solution for Free Convection 

Parameter Present Study (Numer-

ical) 

Sarki & Buhari (2025) (Ana-

lytical) 

Absolute Er-

ror 

Max Velocity 

(𝑼𝒎𝒂𝒙) 
0.25219 0.25219 1.2 × 10−5 

𝑵𝒖 at 𝒀 = 𝟎 5.4133 5.4133 6.3 × 10−5 

𝑺𝒉 at 𝒀 = 𝟎 1.4133 1.4133 8.9 × 10−5 

 

Table 4: Transient Velocity at Y=0.5 

Time (τ) Analytical 𝑼(𝟎. 𝟓, 𝝉) Numerical 𝑼(𝟎. 𝟓, 𝝉) 
0.10 0.064065 0.064065 

0.50 0.320324 0.320324 

 

Steady-State Profiles 

Fig. 2a and 2b illustrate velocity profiles for different 𝐺𝑟 and 𝑁𝑟 respectively. Increasing the 

Grashof number (Gr) significantly enhances buoyancy, leading to a 637% increase in maximum 
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velocity as Gr rises from 1 to 10. The velocity peak shifts towards the hotter wall (𝑌 = 1). Con-

versely, increasing the buoyancy ratio (Nr) dampens the flow, reducing the maximum velocity by 

23% as Nr increases from 0.5 to 2.0, due to the opposing solutal buoyancy force. 

 
Fig. 2a: Velocity Profiles for Different Grashof Numbers (𝐺𝑟) 
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Fig. 2b: Velocity Profiles for Different Buoyancy Ratio Parameter (𝑁𝑟) 

 

Fig. 3a and 3b show temperature profiles for different 𝑁𝑏 and 𝑁𝑡 parameters respectively. A 

higher Brownian motion parameter (Nb) flattens the temperature profile, promoting thermal uni-

formity via enhanced nanoparticle diffusion. In contrast, a higher thermophoresis parameter (Nt) 
steepens the temperature gradient near the hot wall, as thermophoresis drives nanoparticles to 

colder regions, creating a thermal resistance layer. 
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Fig. 3a: Temperature Profiles for Different Brownian Motion (𝑁𝑏) Parameter 
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Fig. 3b: Temperature Profiles for Different Thermophoresis (𝑁𝑡) Parameter 

 

Fig. 4 illustrates concentration profiles with 𝑁𝑡/𝑁𝑏 ratio variations. The ratio Nt/Nb governs the 

concentration distribution. At low ratios, Brownian diffusion dominates, leading to a nearly linear 

profile. At high ratios, thermophoresis dominates, causing significant nanoparticle migration to-

wards the cold wall (Y=0), evident as a sharp concentration gradient. 

https://www.eajournals.org/


European Journal of Mechanical Engineering Research, 12(2),61-78, 2025 

Print ISSN: 2055-6551(Print) 

                                                                   Online ISSN: 2055-656X(Online) 

Website: https://www.eajournals.org/                                                                                     

                         Publication of the European Centre for Research Training and Development-UK 

72 
 

 

Fig. 4: Concentration Profiles with 
𝑁𝑡

𝑁𝑏
 ratioVariations 

 

Transient Evolution and Heat/Mass Transfer 
The transient evolution from startup to steady-state reveals critical dynamics. Velocity fields de-

velop fastest, reaching steady state around τ ≈ 3.0. Thermal fields evolve more slowly (τ ≈ 2.5), 

while nanoparticle concentration, governed by the slower mass diffusion, takes the longest to sta-

bilize (τ > 2.0) as illustrated in Figures 5-7. 
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Fig. 5: Velocity Profile Comparison of Steady State and Transient State 

https://www.eajournals.org/


European Journal of Mechanical Engineering Research, 12(2),61-78, 2025 

Print ISSN: 2055-6551(Print) 

                                                                   Online ISSN: 2055-656X(Online) 

Website: https://www.eajournals.org/                                                                                     

                         Publication of the European Centre for Research Training and Development-UK 

74 
 

 
Fig. 6: Temperature Profile Comparison of Steady State and Transient State 
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Fig. 7: Concentration Profile Comparison of Steady State and Transient State 

 

Most notably, the Nusselt and Sherwood numbers exhibit significant overshoot during the initial 

transient phase (Fig. 8 and Fig. 9). The Nusselt number peaks at 39.6% above its steady-state value, 

and the Sherwood number peaks 28.4% above its steady-state value. This indicates a period of 

enhanced heat and mass transfer immediately after the initiation of flow, which is crucial for ap-

plications involving pulsed or intermittent cooling. 
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Fig. 8: Nusselt Number Evolution of Transient State and Steady State 
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Fig. 9: Sherwood Number Evolution of Transient State and Steady State 

 

CONCLUSION 

 

This study successfully derived exact analytical solutions for steady-state and semi-analytical so-

lutions for transient free convection of nanofluids in a vertical channel. The key findings are: 

i. Analytical Solutions: Closed-form solutions for steady-state and semi-analytical solutions 

for transient state profiles provide a valuable benchmark for validating numerical models 

in nanofluid research. 

ii. Transient Dynamics: The developed Laplace transform solution effectively captures the 

temporal evolution, revealing significant overshoots in heat and mass transfer rates (𝑁𝑢 

and 𝑆ℎ) during early transients, which can be exploited for enhanced thermal performance 

in dynamic systems. 

iii. Parametric Control: The Grashof number (Gr) and buoyancy ratio (Nr) are primary con-

trols for flow intensity, while the Brownian motion (Nb) and thermophoresis (Nt) param-

eters dictate thermal and concentration distributions. The Nt/Nb ratio is a key design pa-

rameter for controlling nanoparticle migration. 
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iv. Validation: Excellent agreement between analytical, numerical, and benchmark results 

confirms the accuracy and reliability of the proposed models. 

This work provides fundamental insights and practical tools for designing and optimizing 

nanofluid based thermal systems in electronics cooling, solar energy, and industrial heat exchang-

ers. Future work will focus on experimental validation and extending the model to include mag-

netic fields, radiative heat transfer, and hybrid nanofluids. 
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