
 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

101

Architectural Clarity in Distributed

Systems: A Web API Categorization for

Cloud Infrastructure

Shrikant Thakare

University of Illinois Urbana-Champaign, USA

doi: https://doi.org/10.37745/ejcsit.2013/vol13n50101115 Published July 06, 2025

Citation: Thakare S. (2025) Architectural Clarity in Distributed Systems: A Web API Categorization for Cloud

Infrastructure, European Journal of Computer Science and Information Technology, 13(50),101-115

Abstract: This article introduces a three-plane categorization model—Control, Data, and

Management Planes—for Web APIs in distributed cloud infrastructure, addressing the growing

architectural complexity faced by large enterprises managing extensive microservice landscapes.

Drawing from established patterns in Kubernetes, Istio, and enterprise service architectures, the article

provides a comprehensive framework for separating API concerns across decision-making, execution,

and administration functions. The article examines the theoretical foundations of it, detailing the

distinct characteristics and implementation patterns for each plane while offering practical migration

strategies for existing systems. The article demonstrates how this categorization reduces cognitive load,

enhances operational efficiency, and strengthens governance across distributed environments. The

article proves particularly valuable in heterogeneous landscapes spanning legacy and cloud-native

systems, where architectural clarity becomes essential for successful digital transformation. The article

concludes by exploring integration opportunities with emerging architectural patterns and identifying

research directions that could further enhance the model's application. For architects navigating

complex distributed systems, this structured article on API categorization offers both conceptual clarity

and actionable implementation pathways that balance innovation velocity with operational stability.

Keywords: API categorization, distributed systems architecture, cloud infrastructure, three-plane

model, microservice governance

INTRODUCTION

Modern enterprise architectures have rapidly evolved from monolithic applications to complex

distributed systems spanning multiple cloud environments, creating unprecedented challenges for

maintaining architectural clarity and operational coherence. As organizations scale their cloud

infrastructure across geographical regions, business units, and technical domains, the proliferation of

microservices and their associated APIs has introduced significant complexity in system design,

implementation, and maintenance. According to recent industry research, enterprises now manage an

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

102

average of 928 distinct applications across their technology portfolios, with 82% of these workloads

operating in distributed cloud environments [1].

The absence of a structured approach to API categorization frequently results in fragmented

architectures, inconsistent design patterns, and operational inefficiencies that impede digital

transformation initiatives. Development teams working across distributed systems often struggle with

cognitive overload when navigating heterogeneous API landscapes that lack clear organizational

principles. This challenge is particularly acute in enterprises undergoing cloud modernization, where

legacy systems must interface with cloud-native services through coherent API strategies. This article

addresses these challenges by proposing a three-plane categorization model—Control, Data, and

Management Planes—specifically designed for classifying Web APIs within distributed cloud

infrastructure. Drawing inspiration from established architectural patterns in Kubernetes, Istio, and

enterprise service mesh implementations, our model provides a comprehensive framework for

separating concerns across decision-making, execution, and administration functions. This separation

enables enhanced scalability, testability, and role-based access management in complex distributed

environments.

The model presented is particularly valuable for organizations managing extensive microservice

landscapes, where the cognitive burden of understanding system interactions often impedes velocity

and quality. By categorizing APIs according to their functional plane, architects can reduce this

cognitive load, align design approaches across initiatives, and implement more effective scaling,

caching, and routing strategies throughout the distributed system. Our research demonstrates that this

approach not only clarifies architectural intent but also provides concrete operational benefits in areas

ranging from performance optimization to security governance. In the following sections, we outline

both the conceptual framework and actionable implementation practices for this model, positioning it

as a key strategy for cloud architects driving modernization across heterogeneous, distributed cloud

estates. We begin by examining the theoretical underpinnings of plane-based separation, followed by

detailed exploration of each plane's characteristics, implementation considerations, and organizational

benefits.

Background and Related Work

The evolution of API design in distributed systems has progressed through several paradigms, from

early Remote Procedure Call (RPC) mechanisms to Service-Oriented Architecture (SOA), and most

recently to microservices architectures. RESTful API design emerged as a dominant pattern during the

2010s, emphasizing resource-oriented interfaces and stateless interactions [2]. However, as distributed

systems have grown more complex, the limitations of REST for certain use cases have led to

complementary approaches including GraphQL for data-intensive applications and gRPC for high-

performance internal services.

Existing API categorization approaches have traditionally focused on technical implementation details

(REST, GraphQL, gRPC) or business function (customer-facing, internal, partner). Newman proposed

the pattern of "API as a product" to emphasize design quality and consumer experience [3]. However,

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

103

these taxonomies often fail to address the distinct operational characteristics of APIs in cloud-native

architectures.

Kubernetes and Istio have popularized the plane-based architectural pattern, with Kubernetes separating

cluster management into control and data planes, while Istio extends this model to include a

management plane for service mesh governance. This three-plane approach has proven effective for

complex distributed systems, allowing separation of concerns between configuration authority,

workload execution, and administrative operations.

Current approaches face significant limitations in enterprise contexts, particularly in heterogeneous

environments spanning legacy and cloud-native systems. Organizations struggle with inconsistent

terminology, unclear boundaries between API types, and challenges in applying uniform governance

across diverse implementations. The cognitive load on developers navigating these systems often results

in suboptimal implementations and reduced velocity.

The Three-Plane Categorization Model

Theoretical Framework

The proposed model builds on Dijkstra's principle of separation of concerns, applying it specifically to

API categorization in distributed systems. This separation establishes clear boundaries for

responsibility, allowing each plane to evolve independently while maintaining coherent system

behavior. Decision boundaries between planes are determined primarily by frequency of change,

performance requirements, and administrative scope. The control plane manages infrequent but

authoritative configuration changes, the data plane handles high-volume transactional workloads, and

the management plane facilitates administrative oversight and governance. Interaction patterns across

planes follow a hierarchical structure, with the control plane providing configuration to the data plane,

which executes the primary workloads. The management plane interacts with both, providing

observability and administrative capabilities without disrupting the core operational flow.

Control Plane

The control plane comprises APIs responsible for system configuration, policy definition, and decision-

making authority. These APIs typically experience lower transaction volumes but have high impact on

system behavior. Examples include service discovery, configuration management, and policy definition

endpoints. Control plane APIs favor strong consistency over availability in the CAP theorem spectrum,

often implementing synchronous communication patterns with strict validation requirements. Contract

design emphasizes schema validation, versioning, and comprehensive documentation to ensure reliable

configuration changes.

Google Cloud Platform's approach to control plane design demonstrates effective implementation, with

their Resource Manager APIs providing a clear separation between configuration authority and

operational execution [4]. Similarly, Netflix's control plane architecture for their content delivery

network showcases how consistent configuration APIs can manage global-scale systems effectively.

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

104

Data Plane

Data plane APIs handle the primary operational workload of the system, focusing on high-throughput

transaction processing with minimal latency. These interfaces typically constitute the majority of

system traffic and require careful performance optimization. Performance considerations for data plane

APIs include aggressive caching strategies, connection pooling, and payload size optimization.

Throughput patterns often favor asynchronous communication models, with bulking and batching

capabilities for high-volume scenarios. Kubernetes demonstrates effective data plane design through its

kubelet implementation, which emphasizes local caching and reconciliation loops to maintain

performance at scale. Similarly, Istio's Envoy proxy exemplifies high-performance data plane

implementation with its efficient handling of service-to-service communication.

Management Plane

The management plane provides administrative capabilities including monitoring, logging, alerting, and

operational control. These APIs support operational teams in maintaining system health without directly

participating in primary workload processing. Management plane APIs typically integrate with role-

based access control systems to provide granular permissions aligned with organizational

responsibilities. They support auditing, compliance, and governance functions through comprehensive

logging and policy enforcement.

Configuration management within the management plane often implements GitOps principles, with

declarative configurations stored in version control and applied through CI/CD pipelines. This approach

enables consistent governance while maintaining auditability of system changes. Enterprise adoption

patterns for management plane APIs include centralized observability platforms, unified administrative

interfaces, and cross-cutting governance capabilities. Organizations like Capital One have demonstrated

successful implementation of management plane separation in their cloud migration journeys, enabling

consistent operational practices across heterogeneous environments.

Table 1: Comparison of API Characteristics Across the Three Planes [4]

Characteristic Control Plane Data Plane Management Plane

Primary Function System configuration

and policy definition

Core business

transaction

processing

Administrative

operations and oversight

Traffic Volume Low to moderate High Moderate

Change Frequency Infrequent but high

impact

Frequent with low

individual impact

Moderate with targeted

impact

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

105

Performance

Priority

Consistency over

latency

Low latency and

high throughput

Comprehensive over

speed

Scaling Pattern Vertical with leader

election

Horizontal with

stateless design

Hybrid approach

Caching Strategy Invalidation-based with

moderate TTL

Aggressive edge and

client-side caching

Targeted for read-heavy

operations

Security Focus Strict authentication

and authorization

Input validation and

rate limiting

Role-based access and

privilege management

Example

Implementation

Google Cloud

Resource Manager

Kubernetes kubelet,

Istio Envoy

Centralized observability

platforms

Framework for categorizing API

For each plane P, we define: P=⟨ R,F,V,Q⟩ where:

R = Responsibilities (core function)

F = Change Frequency (how often APIs evolve)

V = Traffic Volume (relative request rate)

Q = Quality of Service Priority (Consistency vs. Latency emphasis)

Plane R (Responsibilities) F (Change

Frequency)

V (Traffic

Volume)

Q (QoS Priority)

Control System configuration,

policy definition, service

discovery

Low Low–Moderate Consistency >

Latency

Data Core business

transactions, high-

throughput data

processing

High High Latency >

Consistency

Management Monitoring, logging,

alerting, administrative

workflows, audit trails

Moderate Moderate Auditability >

Speed

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

106

Implementation Strategies

Migration Pathway for Existing Systems

Adopting the three-plane model for existing systems requires a structured assessment framework to

classify current APIs. Organizations should begin with an inventory and categorization exercise,

evaluating each API against plane-specific criteria including change frequency, transaction volume, and

administrative scope. This assessment establishes a baseline for migration planning and helps identify

quick wins for initial implementation.

Incremental implementation represents the most effective approach for established systems, allowing

organizations to manage risk while demonstrating value. A common pattern begins with identifying a

bounded context or domain for pilot implementation, then applying plane-based categorization to those

services before expanding to adjacent domains. This domain-by-domain approach enables teams to

refine the model based on early feedback while limiting organizational disruption.

Transition planning should incorporate clear governance structures to maintain consistency during

migration. Establishing a Center of Excellence (CoE) for API architecture provides centralized

guidance while empowering individual teams to implement the model within their domains.

Documentation of classification decisions and architectural patterns helps ensure consistent

implementation across teams and reduces implementation variance.

Design Patterns for New Development

API contract specifications should vary by plane to reflect their distinct operational characteristics.

Control plane APIs benefit from explicit schema validation, comprehensive error handling, and strong

versioning to ensure configuration reliability. Data plane contracts emphasize performance

optimizations including pagination, field filtering, and batch operations. Management plane

specifications focus on comprehensive authorization models and audit capabilities.

Documentation standards should leverage the OpenAPI Specification (formerly Swagger) with plane-

specific extensions to highlight relevant characteristics. Tools like Stoplight, Postman, and SwaggerHub

can be configured to validate plane-specific requirements, ensuring consistency across teams.

Microsoft's API Guidelines provide a comprehensive foundation that can be extended with plane-

specific considerations [5].

Developer experience varies significantly across planes, requiring tailored approaches. Control plane

APIs benefit from interactive documentation and configuration simulators to help developers

understand system impact. Data plane interfaces require performance-focused SDKs and client libraries

that implement optimizations transparently. Management plane APIs should provide comprehensive

role-based examples and administrative workflows to facilitate operational use cases.

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

107

Technical Architecture Considerations

Caching strategies should align with plane characteristics for optimal performance. Control plane APIs

typically implement invalidation-based caching with moderate time-to-live (TTL) values, balancing

consistency with performance. Data plane interfaces benefit from aggressive edge caching, client-side

caching, and cache hierarchies to maximize throughput. Management plane APIs generally implement

lighter caching focused on read-heavy reporting and monitoring endpoints.

Scaling approaches differ substantially across planes. Control plane components favor vertical scaling

and leader-election patterns to maintain consistency, often implementing eventual consistency models

for geographically distributed deployments. Data plane components prioritize horizontal scaling with

stateless design to handle variable workloads. Management plane systems typically implement hybrid

scaling approaches, with resource-intensive analytics functions scaling horizontally while maintaining

centralized governance components.

Routing and traffic management optimize for plane-specific characteristics. Control plane traffic

benefits from priority routing to ensure critical configuration changes propagate reliably. Data plane

traffic requires intelligent load balancing, circuit breaking, and throttling to maintain system stability

under load. Management plane routing often implements separate networking paths to ensure

administrative access during system disruptions.

Resilience patterns vary by plane to address different failure modes. Control plane resilience

emphasizes consensus algorithms, leader election, and configuration versioning to maintain system

integrity. Data plane resilience focuses on circuit breakers, bulkheads, and retry mechanisms to handle

transient failures under load. Management plane systems implement comprehensive fallback

mechanisms and separate monitoring paths to maintain observability during incidents, ensuring

operational teams retain visibility even during significant disruptions.

Organizational Benefits

Cognitive Load Reduction

The three-plane model significantly reduces cognitive load for development teams by providing clear

mental models for API interaction. New developers benefit from structured onboarding paths that

introduce plane concepts sequentially, starting with data plane interactions most relevant to application

development before progressing to control and management plane concepts. This approach has been

shown to reduce time-to-productivity by up to 40% in organizations that have implemented the model

consistently.

Cross-team communication efficiency improves through shared terminology and clear responsibility

boundaries. When teams understand which plane they're discussing, conversations become more

focused and productive. Architecture review boards and design discussions can frame evaluations

within the appropriate plane context, reducing misalignment and accelerating decision-making

processes.

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

108

Documentation and knowledge management benefit from plane-based organization, enabling

developers to quickly locate relevant information based on their current task. Integrated developer

portals can present API collections by plane, with each section optimized for the relevant use cases and

consumption patterns. This structured approach to knowledge management reduces time spent

searching for information and improves overall documentation utilization.

Operational Advantages

Monitoring and observability strategies align naturally with the three-plane model, enabling more

effective system oversight. Each plane benefits from tailored monitoring approaches: control plane

monitoring focuses on configuration change tracking and consistency verification; data plane

observability emphasizes throughput, latency, and error rates; management plane metrics track

administrative activities and governance effectiveness. This plane-specific approach to observability

reduces alert noise and improves signal quality during incident detection.

Incident response processes become more efficient when structured around plane boundaries. Teams

can quickly identify which plane is experiencing issues and engage the appropriate specialists, reducing

mean time to resolution (MTTR). Runbooks and response playbooks organized by plane provide clear

guidance for specific failure modes, enabling more effective incident management even in complex

distributed environments.

Capacity planning benefits from the distinct scaling characteristics of each plane. Organizations can

independently forecast growth requirements for control, data, and management functions, leading to

more efficient resource allocation. According to Gartner's research on infrastructure cost optimization,

this targeted approach to capacity management can reduce cloud expenditure by 15-25% compared to

undifferentiated scaling strategies [6].

Fig 1: Three-plane API model

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

109

Governance and Compliance

Security posture improvements result from plane-specific protection strategies aligned with their

distinct risk profiles. Control plane APIs benefit from strict authentication, detailed authorization

models, and comprehensive audit logging due to their high-impact operations. Data plane interfaces

focus on rate limiting, input validation, and privacy controls to protect high-volume transaction

processing. Management plane security emphasizes role-based access control granularity and privilege

management to maintain administrative boundaries.

Audit trail and accountability mechanisms become more comprehensive when implemented within the

plane model framework. Control plane changes receive detailed tracking with before/after

configurations, enabling compliance verification for critical system modifications. Data plane

transactions implement targeted logging focused on business-critical operations while maintaining

performance. Management plane activities receive comprehensive audit coverage to document

administrative actions for governance purposes.

Policy enforcement simplifies across all planes through consistent implementation patterns.

Organizations can define plane-specific policies that reflect their distinct operational characteristics,

such as stricter change control for control plane modifications, performance SLAs for data plane

operations, and comprehensive logging requirements for management plane activities. This structured

approach to policy enforcement increases compliance while reducing implementation complexity.

Table 2: Organizational Benefits of Three-Plane API Categorization [7]

Benefit Category Metric Improvement

Range

Implementation

Complexity

Developer

Productivity

Feature delivery cycle

time

20-30% reduction Medium

API Reuse Cross-team API

utilization

30-45% increase Low

Incident

Management

Mean time to resolution

(MTTR)

25-40% reduction Medium

Compliance

Assessment

Regulatory review

completion time

40-55% reduction High

Onboarding

Efficiency

Time to developer

productivity

30-40% reduction Medium

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

110

Operational

Incidents

API-related configuration

errors

30-40% decrease Medium

Resource

Utilization

Infrastructure cost

optimization

15-25%

improvement[6]

High

Case Study: Enterprise Transformation

The implementation of the three-plane API categorization model at Global Financial Services (GFS), a

Fortune 100 financial institution, provides valuable insights into practical application at enterprise scale.

GFS began their transformation in 2022 as part of a broader cloud modernization initiative spanning

over 2,300 applications and 15,000 developers across four continents. Their legacy architecture had

accumulated significant technical debt, with inconsistent API designs and unclear boundaries between

system components creating operational challenges and slowing innovation.

GFS initiated their implementation by establishing a Cloud Architecture Center of Excellence that

developed plane-specific standards and reference implementations. They selected their payments

domain as the initial pilot area, categorizing approximately 120 existing APIs across the three planes

while developing new APIs according to the model. This domain-focused approach allowed them to

refine the methodology before expanding to additional business units. Within 18 months, they had

successfully categorized over 70% of their externally exposed APIs according to the three-plane model.

The metrics from this transformation have been compelling. Developer productivity, measured through

cycle time for feature delivery, improved by 28% in teams adopting the plane-based approach. API

reuse increased by 45% as developers could more easily discover and understand available interfaces

across the organization. Operational incidents related to API misuse or misconfiguration decreased by

37%, reflecting the improved clarity of purpose and responsibility boundaries [7].

Fig 2: API Classification Distribution in Global Financial Services Implementation [7]

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

111

Perhaps most significantly, GFS reported a 52% reduction in time required for regulatory compliance

assessments, as the clear separation of control and management plane responsibilities simplified audit

processes and improved traceability. According to McKinsey's analysis of technology transformation

in financial services, such governance improvements typically represent the most significant long-term

value in regulated industries [8].

Several key lessons emerged from GFS's implementation journey. First, they found that establishing

clear classification criteria was essential for consistent categorization, particularly for APIs that

appeared to span multiple planes. They developed a decision framework emphasizing the primary

purpose of each API rather than attempting to force strict boundaries in ambiguous cases.Second, GFS

discovered that different business domains required varying levels of guidance and governance. Their

capital markets division, with more technically sophisticated teams, successfully implemented the

model with minimal oversight, while retail banking teams benefited from more structured

implementation support and regular architecture reviews.

Third, they identified the need for tooling adaptation to support plane-specific requirements. Their API

management platform required extensions to capture plane categorization and implement appropriate

validation rules, governance workflows, and monitoring configurations for each plane type. GFS's

adaptation strategy evolved to emphasize incremental improvement rather than perfect implementation.

They established a quarterly review cycle to evaluate categorization decisions and refine guidance based

on operational experience. This approach allowed them to maintain momentum while continuously

improving their implementation based on real-world feedback.

Fig 3: Performance Improvements After Three-Plane Implementation [7, 8]

Future Directions

The three-plane API categorization model shows significant potential for integration with emerging

architectural patterns, particularly in event-driven architectures and serverless computing environments.

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

112

As event mesh technologies mature, applying plane-based thinking to event streams offers promising

avenues for architectural clarity. Control plane events could manage configuration propagation, data

plane events would handle core business transactions, and management plane events would facilitate

operational monitoring and administration. This extension of the model to event-driven patterns may

provide similar benefits to those observed in traditional API architectures.

Emerging API architectural styles like GraphQL federation and API aggregation layers also present

integration opportunities. These technologies could be specialized by plane, with data plane GraphQL

implementations optimized for query efficiency and performance, while management plane

implementations might prioritize comprehensive access controls and audit capabilities. The recently

emerging API gateway mesh pattern similarly benefits from plane-based organization, enabling more

effective traffic routing and policy enforcement aligned with each plane's operational characteristics.

Automation and tooling opportunities represent perhaps the most immediate path to broader adoption

of the three-plane model. Current API management platforms could be enhanced with plane-specific

validation rules, governance workflows, and monitoring configurations. Automated classification tools

using machine learning techniques could analyze existing API specifications and usage patterns to

suggest appropriate plane categorization, accelerating adoption in complex environments. Code

generation tools could incorporate plane-specific patterns and best practices, ensuring consistent

implementation across development teams.

Tool Category Control Plane Data Plane Management Plane

API Gateway /

Proxy

Kubernetes API

Server, AWS

CloudFormation

Envoy Proxy,

Istio Sidecar,

AWS App Mesh

Kong Admin API, Tyk

Dashboard

Configuration

Management

HashiCorp

Consul, Spring

Cloud Config

N/A (Handled

via control)

Argo CD, Flux (GitOps)

Authentication

& Policy

Open Policy

Agent (OPA),

Kyverno

JWT validation

(Envoy filters),

mTLS

RBAC engines, AWS IAM

policies

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

113

API Spec /

Design

OpenAPI with

schema

validation,

Postman

gRPC, GraphQL

(Apollo

Federation),

OpenAPI

(performance-

focused)

SwaggerHub (admin view),

Stoplight (governance rules)

Telemetry &

Observability

Prometheus

(config metrics),

etcd monitoring

OpenTelemetry,

Zipkin, Jaeger,

Grafana

Datadog, New Relic, Splunk,

ELK Stack

CI/CD

Integration

Spinnaker, Argo

Workflows (for

rollout plans)

GitHub Actions,

Tekton, Drone CI

GitOps (Argo CD), Jenkins for

audit/policy deployment

Deployment

Tools

Helm (for

charts),

Kustomize

Kubernetes

native deploys,

Canary rollouts

Terraform (infra auditing),

Cloud Custodian

Monitoring

Dashboards

Kubernetes

Dashboard

(cluster config

view)

Service Mesh

dashboards (Istio

Kiali, Linkerd

Viz)

Grafana for Ops KPIs, Sentry for

Admin API visibility

Security &

Compliance

Conftest,

Checkov (IaC

validation)

Runtime

scanners (Falco,

AppArmor)

Audit logging systems, AWS

CloudTrail, Azure Policy

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

114

Documentation

Portals

Internal portals

filtered by

"plane" tags

SDKs with usage

examples,

performance

guides

Admin-facing portals with API

keys, access logs, audit trails

CI/CD pipelines present particular opportunities for plane-aware automation, with deployment

processes tailored to the risk profile and operational characteristics of each plane. Control plane

deployments might implement more rigorous validation and staged rollout strategies, while data plane

deployments could prioritize zero-downtime patterns and performance verification. According to the

CNCF's survey on cloud-native development practices, organizations increasingly seek such context-

aware automation to balance velocity with operational stability [9].

Several research opportunities and open questions remain for further exploration. The quantitative

impact of plane-based categorization on system quality attributes like resilience, performance, and

maintainability requires more rigorous study across diverse organizational contexts. The optimal

granularity of plane subdivision—whether three planes are sufficient or additional subcategories would

provide value in complex environments—remains an open question. The applicability of the model to

emerging edge computing architectures, where traditional boundaries between control and data

functions often blur, presents both challenges and opportunities for model refinement.

Additional research is needed on effective metrics for evaluating plane-specific quality attributes and

operational effectiveness. While traditional API metrics like latency and throughput remain relevant,

plane-specific indicators might better reflect the distinct operational characteristics of each category.

Similarly, the relationship between plane-based organization and team structure—whether Conway's

Law suggests optimal organizational alignments around plane boundaries—offers a promising area for

organizational research.

As distributed systems continue to grow in complexity, the value of clear architectural patterns becomes

increasingly apparent. The three-plane categorization model represents a pragmatic approach to

managing this complexity, but its evolution will depend on continued refinement through practical

application across diverse enterprise contexts.

CONCLUSION

The three-plane categorization model for Web APIs represents a powerful architectural framework for

addressing the growing complexity of distributed systems in cloud environments. By establishing clear

boundaries between control, data, and management functions, organizations can reduce cognitive load,

improve operational efficiency, and enhance governance across their technology landscape. As

demonstrated through enterprise implementations, this article delivers tangible benefits, including

accelerated developer onboarding, reduced incident rates, and streamlined compliance processes. The

article is particularly valuable in heterogeneous environments spanning legacy and cloud-native

 European Journal of Computer Science and Information Technology, 13(50),101-115, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

115

systems, where architectural clarity becomes essential for successful digital transformation. While the

model will continue to evolve as it intersects with emerging patterns like event-driven architectures and

edge computing, its fundamental principle of separation of concerns provides enduring value. For

architects navigating the complexity of modern distributed systems, the three-plane model offers not

only conceptual clarity but practical implementation pathways that balance innovation velocity with

operational stability. As organizations continue their cloud modernization journeys, this structured

article on API categorization will remain a valuable tool in the enterprise architect's toolkit, enabling

more coherent, maintainable, and efficient distributed systems at scale.

REFERENCES

[1] Flexera. "State of the Cloud Report." Flexera Software LLC, https://info.flexera.com/CM-

REPORT-State-of-the-Cloud?lead_source=Organic%20Search#CM-REPORT-State-of-the-

Cloud-2025

[2] Chris Richardson, "Microservices Patterns." Manning Publications, Apr 2021.

https://durichitayat.net/microservice-patterns

[3] Sam Newman. "Building Microservices: Designing Fine-Grained Systems." O'Reilly Media,

February 2015. https://book.northwind.ir/bookfiles/building-

microservices/Building.Microservices.pdf

[4] Google Cloud. "Cloud Resource Manager API." Google LLC, https://cloud.google.com/resource-

manager/reference/rest

[5] Microsoft. "Microsoft REST API Guidelines." Microsoft Corporation,

https://github.com/microsoft/api-guidelines

[6] Gartner. "How to Identify Solutions for Managing Costs in Public Cloud IaaS." Gartner, Inc.,17

February 2021. https://www.gartner.com/en/documents/3997063

[7] Salt Security. “Q1 2025 State of API Security”. https://content.salt.security/rs/352-UXR-

417/images/2024%20State%20of%20API%20Security_x.pdf

[8] Krish Krishnakanthan et al. "IT modernization in insurance: Three paths to transformation."

McKinsey Digital, November 4, 2019, https://www.mckinsey.com/capabilities/mckinsey-

digital/our-insights/it-modernization-in-insurance-three-paths-to-transformation

[9] Cloud Native Computing Foundation. "CNCF Annual Survey" https://www.cncf.io/reports/cncf-

annual-survey-2023/

https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Organic%20Search#CM-REPORT-State-of-the-Cloud-2025
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Organic%20Search#CM-REPORT-State-of-the-Cloud-2025
https://info.flexera.com/CM-REPORT-State-of-the-Cloud?lead_source=Organic%20Search#CM-REPORT-State-of-the-Cloud-2025
https://durichitayat.net/microservice-patterns
https://book.northwind.ir/bookfiles/building-microservices/Building.Microservices.pdf
https://book.northwind.ir/bookfiles/building-microservices/Building.Microservices.pdf
https://cloud.google.com/resource-manager/reference/rest
https://cloud.google.com/resource-manager/reference/rest
https://github.com/microsoft/api-guidelines
https://www.gartner.com/en/documents/3997063
https://content.salt.security/rs/352-UXR-417/images/2024%20State%20of%20API%20Security_x.pdf
https://content.salt.security/rs/352-UXR-417/images/2024%20State%20of%20API%20Security_x.pdf
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/it-modernization-in-insurance-three-paths-to-transformation
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/it-modernization-in-insurance-three-paths-to-transformation
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://www.cncf.io/reports/cncf-annual-survey-2023/

