
 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

1

Universal Development with Wasi: Building

Secure Cross-Platform Apps Using

Webassembly System Interface

Sai Vinod Vangavolu

Flyhigh Staffing LLC, Sr. Full Stack Developer, Texas, USA

doi: https://doi.org/10.37745/ejcsit.2013/vol13n38114 Published June 13, 2025

Citation: Vangavolu SV (2025) Universal Development with Wasi: Building Secure Cross-Platform Apps Using

Webassembly System Interface, European Journal of Computer Science and Information Technology,13(38),1-14

Abstract: As software development increasingly demands portability, performance, and security across a

wide range of platforms—from cloud servers to edge devices—WebAssembly (Wasm) has emerged as a

compelling solution. In 2025, the maturation of the WebAssembly System Interface (WASI) marks a

significant milestone in enabling universal application development that is both cross-platform and

sandboxed by design. This paper investigates WASI’s modular system interface, its capability-based

security model, and the practical implications of deploying applications across heterogeneous

environments. Through architectural analysis, real-world use cases, and empirical benchmarks, we

demonstrate that WASI offers a viable alternative to traditional containerization for many workloads. We

further explore how WASI bridges the gap between performance, portability, and safety, paving the way

for a new era of secure and efficient application development.

Keywords: WebAssembly, WASI, cross-platform development, universal binaries, application

sandboxing, edge computing, cloud-native, capability-based security, system interface, DevOps, secure

execution environments, portable applications.

INTRODUCTION

Motivation for Universal Cross-Platform Development

The proliferation of diverse computing environments—ranging from cloud data centers and desktop

systems to mobile, embedded, and edge devices—has created a demand for application development

models that are platform-agnostic, secure, and efficient. Developers increasingly seek the ability to write

software once and run it consistently across multiple operating systems and hardware architectures without

needing to rewrite, recompile, or maintain platform-specific code. This need is especially pronounced in

scenarios involving distributed applications, microservices, and IoT deployments, where managing

multiple codebases or runtime environments leads to increased complexity, higher maintenance costs, and

inconsistent behavior across platforms.

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

2

Challenges of Traditional Native and Virtualized Applications

Historically, developers have relied on a combination of native binaries and virtualized containers (e.g.,

Docker) to achieve deployment flexibility. However, native binaries are tightly coupled to the underlying

operating system and CPU architecture, often requiring extensive modifications and testing for cross-

platform compatibility. Containers, while useful for encapsulating dependencies and offering consistent

environments, come with their own challenges: they tend to be heavy, require kernel-level support, and

introduce security and isolation concerns due to shared resources in the host OS. Additionally, container

runtimes are not uniformly supported across all device classes, particularly in constrained environments

such as IoT devices and browsers. These limitations highlight the need for a lightweight, secure, and

standardized runtime model that supports true cross-platform execution without the overhead of full

virtualization or the fragility of native code portability.

Role of WebAssembly and the Evolution Toward WASI

WebAssembly (Wasm) was originally conceived as a safe, fast, and portable binary format for the web,

allowing near-native performance of applications in browsers. Over time, its potential as a general-purpose

runtime has become evident, especially when decoupled from browser environments. However, to execute

Wasm code outside the browser in a meaningful way—particularly for server-side or system-level tasks—

developers require access to operating system functionality such as file I/O, networking, and clocks. This

is where the WebAssembly System Interface (WASI) comes into play. WASI defines a standardized,

modular, and capability-based API for interacting with host system resources, enabling Wasm modules to

operate across platforms while maintaining strict security guarantees. By abstracting system interfaces in a

way that is both portable and sandboxed, WASI transforms Wasm into a viable foundation for universal

application development beyond the browser.

Research Objectives and Scope

This paper aims to analyze the current state and future potential of WASI as a universal runtime

environment for secure, cross-platform applications. Specifically, we investigate:

 The architecture and design principles of WASI

 The security model underpinning WASI and its practical implications

 The performance and deployment characteristics of WASI-enabled applications across multiple

platforms

 Real-world use cases in cloud, edge, IoT, and desktop computing

 The limitations and challenges of adopting WASI in production environments

 BACKGROUND AND RELATED WORK

WebAssembly (WASM) Overview

WebAssembly (Wasm) was introduced in 2017 as a portable, low-level binary instruction format designed

to execute code efficiently within web browsers. It was developed collaboratively by browser vendors

including Mozilla, Google, Microsoft, and Apple to overcome the limitations of JavaScript in delivering

high-performance applications such as games, CAD tools, and multimedia editors.

Wasm’s design is centered around three core principles:

 Performance: It compiles to a compact binary format that executes at near-native speed by

leveraging just-in-time (JIT) or ahead-of-time (AOT) compilation.

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

3

 Safety: Wasm runs in a sandboxed execution environment, isolating code from the host system to

prevent unauthorized access.

 Portability: Wasm binaries can be run across platforms and browsers with consistent behavior,

thanks to a standardized virtual instruction set.

Though initially confined to the browser, Wasm has evolved into a general-purpose runtime for non-

browser contexts. Projects like Node.js with Wasm support, Wasmtime, and Wasmer have extended its

applicability to server-side computing, embedded systems, and edge environments, setting the stage for

broader cross-platform usage.

WebAssembly System Interface (WASI)

While Wasm excels in portability and security, its initial design lacked access to system-level functions

such as file access, networking, or environment variables—making it unsuitable for most real-world

applications outside the browser. To address this, the WebAssembly System Interface (WASI) was

introduced by the Bytecode Alliance in 2019. WASI defines a modular set of APIs that allow Wasm

modules to safely interact with the host operating system. These APIs follow a capability-based security

model, where modules are granted only specific, pre-approved capabilities (e.g., read-only access to a

directory), reducing the risk of unintended privilege escalation.

Unlike traditional interfaces like POSIX, which assume direct access to the operating system’s full

functionality, WASI enforces strict boundaries. Each API is designed to be deterministic, portable, and

sandbox-compliant—ensuring consistent behavior across environments. In contrast to POSIX’s trust-based

model, WASI’s capabilities require explicit delegation from the host, offering better isolation and finer-

grained control.

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

4

Related Technologies and Research

WASI and WebAssembly represent a new model of application portability that overlaps with but differs

from several established technologies:

 Docker and Containers: Containers offer OS-level virtualization by packaging applications with

their dependencies. While powerful, containers rely on kernel features like namespaces and

cgroups, and they are heavier than Wasm modules. WASI provides a lighter-weight, more secure

runtime model, particularly suitable for constrained devices or fine-grained isolation in multi-tenant

environments.

 Java Virtual Machine (JVM) and .NET CLR: These virtual machines also enable cross-platform

execution, but they require heavy runtimes and are often tied to specific languages or ecosystems.

WebAssembly is language-agnostic and designed for fast, secure startup, which gives it an edge in

edge and serverless environments.

 Recent Adoption: Academic research and industry efforts—such as Krustlet (Kubernetes +

WebAssembly), Fermyon’s Spin platform, and Fastly’s Compute@Edge—are demonstrating

WASI’s real-world viability. These efforts aim to reduce cold-start times, improve isolation, and

provide safer multi-tenant cloud infrastructure.

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

5

WASI Architecture and Capabilities

Modular Design

WASI’s architecture is inherently modular, aligning with WebAssembly’s minimalist and pluggable

design. The interface is split into a set of proposals—each focusing on a specific aspect of system

interaction. This modularization enables independent evolution and extension while keeping the core

runtime lean.

 Core Modules: These include support for file system access (wasi-filesystem), clocks (wasi-

clocks), environment variables (wasi-environment), and process control (wasi-process). They

provide the foundation for system interaction in a safe and deterministic way.

 Emerging Extensions: Several key proposals are under development or refinement as of 2025:

o Networking (wasi-sockets): Enables TCP/UDP communication while enforcing

capability-based constraints.

o Threading and Shared Memory: Designed for concurrent workloads, crucial for

performance-intensive applications.

o Asynchronous I/O: Enables non-blocking operations, improving efficiency in event-

driven and serverless workloads.

Security and Sandboxing

WASI emphasizes a capability-based security model over traditional permission or role-based

approaches. Rather than requesting broad access at runtime, applications are provided with explicit handles

to only the resources they need.

 Prevention of Privilege Escalation: Because WASI apps can only access pre-specified resources,

untrusted modules cannot exploit system calls or elevate privileges, unlike in traditional POSIX

systems.

 I/O Abuse Prevention: File and network handles are opaque and confined to the granted scope.

There is no global file system access or wildcard path resolution.

 Isolation in Multi-Tenant Environments: WASI apps can be deployed in environments with

multiple users or tenants (e.g., edge compute platforms) without risking inter-process interference

or system compromise. This makes WASI particularly attractive for SaaS providers and serverless

platforms.

Compilation Toolchains and Language Support

Modern toolchains support a growing ecosystem of languages that can target WebAssembly and WASI,

making adoption easier for a broad range of developers:

 Rust: Arguably the most mature language for Wasm/WASI due to its memory safety and strong

tooling support (e.g., wasm-bindgen, cargo wasi).

 C/C++: Supported via LLVM and the WASI SDK, allowing legacy codebases to be ported with

minimal changes.

 AssemblyScript: A TypeScript-like language designed for Wasm that’s easy for JavaScript

developers to adopt.

 Zig: An emerging systems programming language with growing Wasm support and a focus on

simplicity and performance.

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

6

The WASI SDK, maintained by the Bytecode Alliance, simplifies the process of compiling to WASI by

bundling Clang/LLVM and relevant sysroot libraries. Developers can cross-compile native code into WASI

modules that run consistently across platforms, from Linux and Windows to lightweight edge devices.

USE CASES AND APPLICATIONS

The WebAssembly System Interface (WASI) is redefining software deployment by providing a secure,

platform-neutral foundation for application execution. From the cloud to constrained devices, WASI

enables portable workloads that are efficient, sandboxed, and compatible with modern development

workflows. This section explores three key domains where WASI is proving especially impactful: cloud-

native and edge computing, IoT and embedded systems, and desktop command-line utilities.

Cloud-Native and Edge Computing

Universal Binaries for Microservices

WASI makes it possible to compile services into universal binaries that run identically across cloud

environments without the need for OS-specific packaging or containerization. These binaries are self-

contained, sandboxed, and small in size, making them ideal for microservices architectures where

modularity, rapid deployment, and low overhead are paramount.

Instead of shipping Docker images, organizations can distribute WASI modules that run on any WASI-

compliant runtime (e.g., Wasmtime, Wasmer, or Fermyon Spin), leading to faster cold starts and simplified

CI/CD pipelines. The result is a more streamlined, language-agnostic deployment model for backend

services.

WASI on Serverless Platforms and Kubernetes

Modern serverless platforms such as Fermyon Cloud, Suborbital, and WasmEdge have integrated WASI

to provide faster startup times, stronger security guarantees, and more efficient multitenancy compared to

traditional containers. These platforms treat Wasm modules as the unit of compute, enabling milliseconds-

level cold starts and reduced resource consumption.

In Kubernetes environments, projects like Krustlet and SpinKube allow scheduling and running of WASI

applications as first-class citizens, using Kubernetes controllers tailored to Wasm workloads. This enables

operators to deploy mixed clusters running both containerized and WASI-native workloads side by side.

Edge Workloads: Low-Latency and Offline-Capable

Edge computing requires applications to be fast, secure, and resource-efficient. WASI fits naturally into

this paradigm by enabling the deployment of applications that:

 Start instantly (often <10ms)

 Require no hypervisor or container runtime
 Run in sandboxed environments, ideal for multi-tenant edge nodes

Use cases include content delivery, ML inference at the edge, telemetry processing, and offline-capable

kiosks or gateways. WASI modules can be deployed via over-the-air updates and run consistently on a

variety of hardware, including rugged or disconnected devices.

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

7

IoT and Embedded Systems

Lightweight Deployment

IoT devices typically operate under tight constraints in terms of CPU, memory, and storage. WASI

applications have a minimal binary size, require no background daemons or container engines, and can be

launched directly by lightweight runtimes. This makes them suitable for IoT use cases where traditional

software stacks would be impractical.

Secure Execution on Constrained Hardware

Security is a top concern in IoT, where devices are often deployed in hostile or uncontrolled environments.

WASI’s capability-based model ensures that only explicitly granted resources (e.g., a specific GPIO pin

or sensor file) are accessible to the application. This sharply reduces the attack surface and prevents

unintended behavior due to compromised or buggy code.

Moreover, by using sandboxed runtimes, manufacturers can run third-party plugins or user-submitted code

safely on shared hardware, opening the door to more flexible and extensible devices.

WASI Runtimes for ARM, RISC-V, etc.

Runtimes like WasmEdge, Wasmtime, and Wasmer now offer full support for ARMv7, ARM64, and

RISC-V architectures. This allows WASI apps to run directly on popular embedded boards such as

Raspberry Pi, BeagleBone, and ESP32-based systems. Developers can compile a single WASI binary and

deploy it across diverse hardware without modification, drastically simplifying the firmware update

process.

Desktop and CLI Tools

WASI Apps as Cross-Platform Desktop Utilities

For desktop developers, WASI provides a way to create command-line tools and background utilities that

are genuinely cross-platform. A single binary can be shipped to Linux, macOS, and Windows users

without worrying about system libraries, environment setup, or OS-specific quirks.

Use cases include system monitoring tools, backup utilities, static site generators, and developer CLI

utilities—many of which are traditionally written in platform-dependent scripting languages or compiled

natively per OS.

Integration with Electron and Tauri

WASI can be integrated into desktop apps built using web-based frameworks such as Electron and Tauri.

Since these environments already embed WebAssembly-compatible JavaScript engines (like V8 or

WebKit), WASI modules can be used to power performance-critical logic, such as local file parsing, image

processing, or cryptographic operations.

Tauri, which is more lightweight than Electron, has native support for invoking WASI modules, enabling

secure and fast native extensions without bundling a full runtime environment.

Packaging and Distribution Strategies

WASI modules are often distributed as .wasm binaries, optionally accompanied by manifest files specifying

required capabilities (e.g., read access to /tmp/data). Package managers such as wapm (WebAssembly

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

8

Package Manager) or Spin’s registry provide ecosystems for discovering, publishing, and updating

WASI-based software.

Tools like wasmer run or spin deploy simplify launching WASI apps across platforms, supporting CLI

flags, environment variables, and configuration schemas. These patterns mirror existing developer

workflows while introducing more predictable behavior and tighter security.

Experimental Evaluation

To validate the practical performance and security benefits of WASI-based applications, we conducted a

series of experiments comparing WASI modules against traditional native binaries and Dockerized

applications across common operating systems and hardware configurations. The evaluation focuses on

runtime performance, binary size, cold start latency, and sandbox isolation guarantees.

METHODOLOGY

Benchmarks for Execution Time, Memory, and Footprint

Three benchmark applications were selected:

 Compute-intensive workload: SHA-256 hash computation on a 100MB file

 I/O-intensive workload: Reading and writing a large set of JSON records to disk

 Mixed workload: A simulated microservice responding to HTTP requests and performing

moderate computation

Each workload was implemented in Rust and compiled for:

 WASI (using wasmtime and wasmedge runtimes)

 Native binaries (compiled to target OS)

 Docker containers (Alpine-based images)

Key metrics recorded:

 Execution time (ms)

 Memory usage (peak RSS)

 Binary size (on-disk footprint)

 Cold start time (from invocation to first output)

Comparison Across Platforms

The experiments were run on:

 Linux (Ubuntu 22.04)

 Windows 11

 macOS Ventura (Apple M1)
Edge-specific evaluations were conducted on:

 Raspberry Pi 4 (ARMv8)

 Intel NUC (x86_64 edge node)
All platforms ran the latest stable versions of Wasmtime, Wasmer, and Docker (as of Q1 2025). Native and

Dockerized apps were compiled with the same toolchains and optimization flags as the WASI variants.

Runtime Performance vs Native and Dockerized Apps

In addition to raw performance, we evaluated:

 Startup overhead (especially for short-lived tasks)

 Concurrency behavior (in multi-request HTTP scenarios)

 File system and network access latency

 Impact of sandboxing on observable execution

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

9

Security audits were also performed using static analysis and runtime sandbox tests to detect any sandbox

violations or unintended capability leaks.

RESULTS

Execution Speed and Binary Size

Workload Native (ms) Docker (ms) WASI (ms) WASI/Native (%)

SHA-256 (100MB) 140 160 165 118%

File I/O 230 250 275 119%

HTTP Service 12 avg/req 14 avg/req 15 avg/req 125%

Bar Chart – This shows execution time (in milliseconds) for each workload across Native, Docker, and

WASI environments. You can clearly see how WASI performs slightly slower than native but is

competitive with Docker.

Pie Chart – This visualizes the relative execution cost of WASI compared to native binaries. The higher

percentage for HTTP Service (125%) indicates that WASI introduces more overhead for latency-sensitive,

small workloads, while still remaining within a reasonable margin.

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

10

 Binary sizes:

o Native: 2.1MB–4.8MB

o Docker images: 18MB–35MB

o WASI .wasm modules: 1.3MB–2.7MB

WASI binaries were consistently smaller than Docker images and slightly smaller than statically linked

native binaries, benefiting from link-time optimization and minimal runtime dependencies.

Cold Start Latency in Edge Environments

Platform Docker (cold start ms) WASI (cold start ms)

Raspberry Pi 4 620 47

Intel NUC 390 33

WASI apps demonstrated 10x–15x faster cold starts compared to Docker, which is critical for serverless

and edge-triggered functions. The absence of VM or container engine initialization accounts for much of

this improvement.

This bar chart clearly illustrates the dramatic difference in cold start latency between Docker and WASI

across both platforms:

 On Raspberry Pi 4, WASI starts roughly 13× faster than Docker (47ms vs. 620ms).

 On Intel NUC, WASI is about 12× faster (33ms vs. 390ms).

Security Audit Results

 No sandbox violations were detected under normal or adversarial inputs.

 Attempts to access undeclared file paths, environment variables, or network sockets were correctly

rejected with WASI capability errors.

 Memory isolation remained intact even under simulated buffer overflow conditions, confirming

robust sandboxing at the runtime level.

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

11

DISCUSSION

Trade-offs in Flexibility vs Security

While WASI’s capability-based model significantly improves safety, it can limit flexibility—especially for

legacy code expecting POSIX-style filesystem and process APIs. Features like fork(), exec(), and shared

memory require redesign or workarounds using asynchronous patterns and event-based concurrency.

However, the trade-off is favorable in multi-tenant environments, where security isolation is paramount.

Emerging proposals such as the WASI component model and improved async I/O APIs are addressing

many of these limitations, making WASI more developer-friendly without sacrificing security guarantees.

Observations on Developer Productivity and Debugging

Developer productivity was positively impacted by:

 Consistent execution across OSes

 Unified build targets

 Fast feedback loops from sub-second startup times

However, some challenges remain:

 Limited debugging tools compared to gdb/lldb

 Sparse support for dynamic linking or third-party C libraries

 Steep learning curve for configuring WASI runtimes and granting capabilities

The ecosystem is rapidly evolving, with tools like cargo component, WASI Preview 2 SDK, and Spin

dev tools improving the experience for both novice and advanced developers.

CHALLENGES AND LIMITATIONS

Despite its promise, the WebAssembly System Interface (WASI) remains an evolving standard with several

limitations that impact its adoption and applicability across all domains of software development. These

challenges include incomplete API coverage, development and debugging constraints, and integration

friction with existing systems.

Incomplete System API Coverage

WASI currently provides a minimal and carefully scoped set of system APIs designed around security and

portability. However, this limited scope excludes many features available in traditional OS environments:

 No support for process management (e.g., fork(), exec())

 Limited file system capabilities (e.g., no access to full paths or symbolic links)

 Absence of socket-level networking in the stable core (though proposals are underway)

This can hinder porting existing applications or libraries that depend on more comprehensive system

interfaces like POSIX.

Debugging Limitations Compared to Native Apps

Debugging WASI applications is less mature than for traditional native development. Key limitations

include:

 Lack of standardized debugging symbols or DWARF support in all runtimes

 Minimal runtime-level introspection or backtracing

 Limited breakpoint support and watch variables in many IDEs

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

12

Although projects such as WasmDbg, Wasmtime’s debug build, and Chrome DevTools integration for

Wasm modules show promise, developer workflows remain constrained for complex applications.

WASI Threading and Async Model Maturity

Concurrency in WASI is still a work-in-progress. The current standard:

 Does not support native threads or shared memory, which restricts multi-core execution

 Uses asynchronous APIs via poll_oneoff() and future proposals, which differ significantly from

familiar threading models in C/C++ or POSIX

This immaturity complicates the development of high-performance, concurrent applications and requires

re-architecting for async paradigms.

Integration Barriers with Legacy Systems

WASI’s strict sandboxing and capability restrictions make it difficult to interface with:

 Legacy applications or monoliths requiring unrestricted I/O

 Native libraries (e.g., libssl, libsqlite) without WASI-compatible ports

 System-level daemons or services

As a result, hybrid deployment strategies are often required, where WASI apps coexist with traditional

services via inter-process communication or API boundaries, increasing operational complexity.

FUTURE DIRECTIONS

The WASI ecosystem is advancing rapidly, with several efforts underway to address current limitations and

expand the scope of universal application development. Key future directions include standardization

progress, integration with AI/ML workflows, mobile deployment, and developer tooling enhancements.

Standardization Roadmap (WASI Preview 2 and Beyond)

WASI Preview 2, released as a major milestone in 2024, introduces:

 The component model, allowing Wasm modules to import/export functions and state in a

structured, language-neutral way

 More expressive APIs for I/O, clocks, networking, and resource management

 Interoperability across languages using WebAssembly Interface Types (WIT)

The roadmap beyond Preview 2 includes:

 Threading and shared memory proposals

 Expanded filesystem access

 Comprehensive error handling and observability APIs

These advances aim to close the gap with traditional system APIs while maintaining WASI’s safety

guarantees.

Integration with AI/ML Workflows (e.g., WASM + ONNX)

Running machine learning models in WebAssembly is gaining traction through efforts like:

 ONNX Runtime Web and TensorFlow.js with Wasm backends

 Spin plugins for AI inference at the edge

 WASI-NN proposal enabling hardware-accelerated neural net execution in WASI

These innovations allow secure, lightweight AI inference in constrained or untrusted environments—

opening up new possibilities in edge AI, browser-based ML, and secure inferencing on personal devices.

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

13

Progressive WebAssembly Adoption in Mobile Environments

WASI is increasingly being considered for progressive enhancement in mobile:

 Hybrid apps (built with Tauri or Capacitor) can embed WASI for local compute

 Progressive Web Apps (PWAs) use WASI modules for advanced offline functionality

 Emerging mobile runtimes (e.g., WasmEdge Mobile) are being tested on Android/iOS

Although performance and platform constraints remain, this marks a critical step toward truly universal

binaries—usable on cloud, desktop, edge, and mobile without recompilation.

Developer Tooling and Observability Improvements

To improve developer adoption and experience, several tooling efforts are underway:

 Better debugging support, including DWARF integration in runtimes and IDE extensions

 Observability APIs exposing metrics, tracing, and structured logs in a standardized form

 Package managers like wapm, and registries for publishing, versioning, and consuming WASI

components

CONCLUSION

The WebAssembly System Interface (WASI) represents a transformative shift in how software can be

developed, deployed, and executed across diverse environments. By enabling secure, portable, and

lightweight applications that run consistently across operating systems and hardware platforms, WASI

brings the long-standing vision of universal binaries closer to reality.

This paper has explored the motivations behind WASI’s emergence, contrasted it with traditional

application models, and detailed its architecture, toolchains, and real-world use cases. Our experimental

evaluation demonstrated that WASI-based applications offer compelling performance—especially in cold

start times and binary size—while providing strong security guarantees through a capabilities-based

sandbox model.

However, significant challenges remain. The limited scope of current system APIs, lack of full threading

support, and immature debugging tools present hurdles to broader adoption. Integration with legacy systems

also requires bridging tools and hybrid patterns that may increase architectural complexity.Despite these

limitations, the future of WASI is promising. Standardization efforts like WASI Preview 2 and the

component model are poised to unlock more expressive and composable application patterns. Integration

with AI/ML runtimes, edge computing platforms, and mobile environments signals growing relevance

across industries. Simultaneously, improvements in developer tooling, observability, and packaging

ecosystems are making WASI increasingly viable for mainstream software development.

As WebAssembly continues to evolve from a browser technology into a foundational execution format for

the cloud, edge, and beyond, WASI will play a central role in ensuring that the code we write today is

portable, secure, and future-proof.

REFERENCE
1. Ţălu, M. (2025). A comparative study of WebAssembly runtimes: performance metrics,

integration challenges, application domains, and security features. Archives of Advanced

Engineering Science, 1-13.

 European Journal of Computer Science and Information Technology,13(38),1-14, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

14

2. Van Kenhove, M., Seidler, M., Vandenberghe, F., Dujardin, W., Hennen, W., Vogel, A., ... &

Volckaert, B. (2024). Cyber-physical WebAssembly: Secure Hardware Interfaces and Pluggable

Drivers. arXiv preprint arXiv:2410.22919.

3. Ray, P. P. (2023). An overview of WebAssembly for IoT: Background, tools, state-of-the-art,

challenges, and future directions. Future Internet, 15(8), 275.

4. Waseem, M., Das, T., Ahmad, A., Liang, P., & Mikkonen, T. (2024, June). Issues and their

causes in WebAssembly applications: An empirical study. In Proceedings of the 28th

International Conference on Evaluation and Assessment in Software Engineering (pp. 170-180).

5. Al-Baldawi, A. J. A. (2024). Setting up WebAssembly in a Cloud Environment that Supports

AMD Secure Encrypted Virtualization.

6. Nguyen, S. D. (2025). Optimizing Web Performance and Computational Efficiency: A Deep Dive

into WebAssembly’s Technical Advancements and Real-World Applications.

7. Wen, E., Weber, G., & Nanayakkara, S. (2022). WasmAndroid: A Cross-Platform Runtime for

Native Programming Languages on Android. ACM Transactions on Embedded Computing

Systems, 22(1), 1-19.

8. Kakati, S., & Brorsson, M. (2023, June). Webassembly beyond the web: A review for the edge-

cloud continuum. In 2023 3rd International Conference on Intelligent Technologies (CONIT) (pp.

1-8). IEEE.

9. Martins, P. J. P. (2021). Development of an e-portfolio social network using emerging web

technologies (Master's thesis, Universidade do Minho (Portugal)).

10. Yang, Y., Hu, A., Zheng, Y., Zhao, B., Zhang, X., & Quinn, A. (2024). Transparent and Efficient

Live Migration across Heterogeneous Hosts with Wharf. arXiv preprint arXiv:2410.15894.

11. Wen, E. (2020). Browserify: Empowering Consistent and Efficient Application Deployment

Across Heterogeneous Mobile Devices (Doctoral dissertation, University of Auckland).

