
 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

1

Improving High Availability Services Using

KVM Full Virtualization

Eda Tabaku

Department of Computer Science, University “Aleksandër Moisiu” Durrës, Albania

Email: edatabaku@uamd.edu.al

doi: https://doi.org/10.37745/ejcsit.2013/vol13n1115 Published January 07, 2025

Citation: Tabaku E (2025) Improving High Availability Services Using KVM Full Virtualization,

European Journal of Computer Science and Information Technology, 13 (1), 1-15

Abstract: In the digital era, critical sectors like banking, ISPs, and cloud-based

services depend on robust, secure networks to ensure uninterrupted service availability.

Key operations such as financial transactions, customer support, and online services

rely on high system uptime, essential for business continuity and customer trust.

Network and server administrators play a vital role in maintaining high availability

(HA) for systems like file servers, web servers, database servers, backup systems, and

enterprise applications. HA infrastructures often use multiple servers working

collaboratively to ensure continuous service. If one server fails, another takes over

seamlessly, preventing significant disruptions. Virtualization technology enhances HA

systems by hosting services on virtual machines (VMs) that can migrate between

physical nodes within a cluster. This ensures uninterrupted service even during

hardware failures. This paper examines the use of open-source tools for managing HA

services, focusing on cost efficiency and system optimization. The Heartbeat program

facilitates real-time VM migration across cluster nodes, maintaining service continuity.

To improve this process, the Perf+ algorithm is introduced. Perf+ optimizes CPU

performance, reduces memory usage, and minimizes downtime by transferring fewer

bytes of modified memory pages during migration, reducing CPU and network load.

The proposed solution is implemented in an experimental HA system to evaluate the

performance of real-time VM migrations. The research analyzes the impact of these

migrations on system efficiency, aiming to advance HA infrastructures in virtualized

environments through optimized resource utilization and reduced operational

interruptions.

Keywords: virtualization, KVM, full-virtualization, open source, high availability

INTRODUCTION

Virtualization

Virtualization is one of the most widely used and valued technologies by system

administrators today. Its popularity and importance have grown due to several key

factors. The continuous improvement in the power and performance of x86 hardware is

mailto:edatabaku@uamd.edu.al

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

2

a major reason, with modern processors supporting more memory and executing

multiple processes simultaneously, thanks to multi-core architectures. Additionally, the

integration of virtualization-specific technologies directly into the latest Intel and AMD

processors has made virtualization more accessible and easier to implement in

commercial products. The availability of a wide range of virtualization solutions, from

desktop environments to server systems, has significantly expanded the options for

tailored implementations. Open-source tools like XEN and KVM are particularly

favored for their cost-reduction benefits and ability to enhance system capabilities.

These advancements make virtualization indispensable, offering flexibility, efficiency,

and scalability for modern computing needs.

High Availability and System Reliability

A system is considered available when it performs its intended functions without

interruptions. Availability is defined as the probability of a system being operational

over a specific time period and is calculated using the formula: Availability = Uptime /

(Uptime + Downtime). Uptime and downtime are often replaced with "Mean Time

Between Failures (MTBF)" and "Mean Time To Repair (MTTR)," respectively.

Systems with high complexity generally have lower overall MTBF due to an increased

likelihood of failures. High availability (HA) systems eliminate single points of failure

by incorporating redundancy, such as multiple servers working as backups for each

other. Critical services, such as banking or ISP operations, require continuous

availability (24/7), while less demanding systems may tolerate occasional downtime.

Availability levels range from 99% to 99.99999%, corresponding to allowable

downtime from days to mere seconds annually. Achieving HA involves using fault-

tolerant designs, redundancy in hardware components, and efficient repair mechanisms

to minimize downtime. Service Level Agreements (SLAs) define the required

availability level based on business needs. In practice, HA systems use strategies like

load-balancing servers or hardware duplication to ensure reliability, making them

indispensable for critical applications.

The goal of this paper is to develop a user-mode algorithm that will communicate with

the Linux kernel to achieve three main objectives: first, enable real-time migration of

virtual machines between network nodes in the event of a controlled failure; second,

use the HASH-MD5 technique to transfer the same amount of information with a

smaller data size (fewer bytes); and third, reduce the number of modified pages of

processes to be migrated between virtual machines. The project will be implemented

using paravirtualization techniques via full virtualization through KVM. The objectives

include providing an overview of virtualization, its types and techniques, and prior work

on using virtualization in clusters with critical services; proposing and implementing a

solution for Heartbeat to migrate virtual machines between physical nodes in real-time;

developing an algorithm to improve CPU and memory utilization; and evaluating the

system's performance during VM migration.

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

3

LITERATURE REVIEW

Virtualization has become a cornerstone technology for optimizing resource utilization

and enhancing system performance, especially in data centers, cloud computing, and

grid computing environments. Live migration of virtual machines (VMs) across hosts

is a critical process, enabling load balancing, fault tolerance, and high availability while

minimizing service disruption. Studies have shown that downtime during live migration

can be reduced to as little as 60ms, as demonstrated by Barham et al. (2003) using KVM

VMM. However, performance impacts, such as network bottlenecks and CPU/memory

allocation challenges, remain significant, as highlighted by Cherkasova et al. (2007),

who emphasized the need for continuous monitoring and diagnostics.

Further comparisons of virtualization platforms, such as those by Quétier et al. (2007),

reveal varying trade-offs in isolation, scalability, and memory efficiency among tools

like VMware, KVM, and KVM. For example, KVM excels in memory savings but

struggles with network isolation, while VMware ensures high-performance isolation.

Modern frameworks like Vagrant have facilitated live VM migration across

heterogeneous hypervisors, supporting seamless maintenance and load balancing, as

Liu et al. (2008) demonstrated. Similarly, advancements in KVM, such as Kernel

Samepage Merging (KSM) and SELinux integration, improve resource management

and isolation in resource-constrained environments.

Despite these advancements, challenges such as security risks during live migration and

the impact on I/O-intensive applications persist. Researchers like Choudhary et al. have

explored techniques like pre-copy and post-copy migration to address these issues,

focusing on metrics that minimize migration overhead. Open-source platforms like

KVM and KVM continue to evolve, offering features like snapshots and "copy on

write" images, which enhance deployment efficiency. Collectively, these studies

underline the dynamic nature of virtualization, its critical role in modern IT systems,

and the ongoing efforts to overcome its limitations for broader, more efficient adoption.

METHODOLOGY

This study employs a structured approach to design, implement, and evaluate an

optimized algorithm for resource management in virtualization technologies. The

methodology begins with the creation of an advanced algorithm designed to enhance

resource utilization—specifically CPU, memory, and I/O—within virtualized

environments. The algorithm focuses on improving resource sharing efficiency among

virtual machines (VMs), ensuring balanced and effective use of system capacities to

achieve higher performance and scalability.

Following the development phase, the algorithm will undergo rigorous testing in a

controlled experimental environment. The KVM virtualization platform will serve as

the testing framework, allowing real-world implementation and assessment of the

algorithm. Performance metrics such as processing speed, CPU utilization, memory

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

4

consumption, and I/O throughput will be monitored and analyzed under varying

workload conditions to evaluate the algorithm's effectiveness.

The final phase involves a comparative analysis of the experimental results against

existing resource management techniques in virtualization. This analysis aims to

measure improvements in system efficiency, stability, and scalability introduced by the

proposed algorithm. Additionally, the study will identify areas for further optimization

and offer recommendations for enhancing virtualization systems. By integrating these

findings, the research contributes to advancing resource management solutions tailored

to diverse IT environments.

DEVELOPMENT OF THE PERF+ ALGORITHM

This paper focuses on designing and implementing a high-availability (HA)

infrastructure using Heartbeat on virtual servers, with the proposed Perf+ algorithm at

its core. The goal is to enable real-time migration of virtual machines (VMs) between

nodes in case of failure, optimize data transfer using the Hash-MD5 technique for

reduced byte size, and minimize modified pages during migration. Utilizing full

virtualizaton with KVM, the system ensures efficient resource management and

minimal downtime. Heartbeat facilitates communication between network nodes via

UDP protocol, ensuring stable performance. The Perf+ algorithm enhances HA by

transferring modified pages more efficiently, reducing bandwidth usage and improving

CPU performance. This approach achieves faster VM migrations and improved

reliability, with the results evaluated in subsequent analysis.

Based on the description above, we will construct a general diagram related to the

system design.

Figure. 1 The experimental environment

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

5

Figure 1 shows the topology used to implement the practical development of the paper.

In Apendix is provided the flowchart of the Perf+ algorithm and code in the C language

for the Perf+ Algorithm.

RESULTS, AND DISCUSSION

To achieve the objective of this work, two key questions arise that deserve special

attention:

• Are critical services available during migration?

• How are the services provided to users impacted by the closure of a physical

node for maintenance purposes?

The main objective of the measurements we will conduct is to analyze performance in

the case of controlled failures, both before and after implementing the Perf+ algorithm,

with the aim of improving system performance in scenarios where it provides high

availability (HA) services on virtualized platforms with KVM, specifically for

representatives of open-source platforms using para-virtualization and full

virtualization technology.

Below is a list of measurements to be performed, with their details provided in the

corresponding paragraphs:

1. Downtime

2. CPU Performance

3. Bandwidth

4. Losses

5. SLA

Each measurement experiment is structured into three parts: description, methodology,

and results. The description and results of each experiment will be provided in the

corresponding experiment paragraphs. The results for each experiment will be

graphically compared at the end of each testing paragraph.

Since the methodology is the same for all experiments conducted, it will be presented

below, and only the description and results of each experiment will be presented in the

subsequent sections.

The results of the following tables are displayed using benchmarks based on Memory

Intensive techniques, called: LMBench (Benchmark open-source)1. This tester is

installed on all virtual machines at the client level and on the V Center virtual machine

at the server level. The tester measures in real-time the entire migration of machines

based on the physical memory page technique. The tester is pre-built, sourced from the

internet, and written in the C programming language, chosen for its compatibility with

hardware.

The algorithm relies on the TCP technique. A counter named Counter++ calculates how

many times the SYN flag is set to 1. Each time this flag is set to 1, it indicates that a

page has been migrated from one physical machine to another.

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

6

Measurements will be conducted in scenarios where 8 virtual machines fail. For this

scenario, the number of modified pages migrated in each iteration is provided below.

Measurements will consider only 4 iterations for migrating the modified pages. If all

the information contained in the modified pages is not migrated within four iterations,

the remaining data will be considered lost. The amount of lost information will be

analyzed in the subsequent paragraphs.

Below is a graphical representation of the number of pages lost during each failure of

the HA system implemented with KVM.

Chart 1 The number of migrated pages in the HA system with KVM

Below is a graphical representation of the number of pages lost during each failure of

the HA system implemented with KVM and Perf+.

214

105

48

21

0

50

100

150

200

250

Iterim I Iterim II Iterim III Iterim IV

N
o

.
o

f
p

ag
e

s
m

ig
ra

te
d

Iterations

Number of pages migrated to HA system with KVM

8 MV

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

7

Chart 2 The number of migrated pages in the HA system with KVM and Perf+

Downtime

Description
The downtime will be analyzed, measured, and compared in the case of a controlled

system failure, and as a result, a real-time migration will be performed when the system

is running with KVM.

Results

• Measurement of the downtime of the HA system implemented with KVM.

Number of

failed

machines

Number of

pages

migrated

in iteration

I

Number of

pages

migrated

in iteration

II

Number of

pages

migrated

in iteration

III

Number of

pages

migrated

in iteration

IV

Downtime

8 VM 214 pages 105 pages 48 pages 21 pages 2055 ms

From Table 3, we derive the following results, which highlight the performance of the

KVM hypervisor. This hypervisor demonstrates excellent performance, especially

regarding memory and I/O devices.

There is also a notable improvement in CPU performance, although not following the

same trend observed in the first two entities (as will be seen in the subsequent

experimental tables). The advantage of this technology lies directly in the technique

called Full virtualizaton with Post-Copy. (The pre-copy technique is not the subject of

214

105

48

21

0

50

100

150

200

250

Iterim I Iterim II Iterim III Iterim IV

N
o

.
o

f
p

ag
e

s
m

ig
ra

te
d

Iterations

Number of pages migrated to HA system with KVM

8 MV

Table 3 Downtime of the HA system implemented with KVM

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

8

this study.) This is a powerful tool that significantly enhances the overall performance

of the Hypervisor known as DOM0 as well as the Guest machines referred to as DOMU.

• Measurement of the downtime of the HA system implemented with KVM using the

Perf+ algorithm

Number of

failed

machines

Number of

pages

migrated

in iteration

I

Number of

pages

migrated

in iteration

II

Number of

pages

migrated

in iteration

III

Number of

pages

migrated

in iteration

IV

Downtime

8 VM 121 pages 64 pages 31 pages 17 pages 1003 ms

Table 4 Downtime of the HA system implemented with KVM and Perf+.

Relying on the advantages of the full virtualizaton technique, we implement the Perf+

Algorithm in the user space (as explained in paragraph 5.8) by utilizing the Hash-MD5

technique. This approach significantly reduces the number of migrated pages, which in

turn automatically reduces the bandwidth consumption. As seen in the table above, the

migration time when using the Perf+ Algorithm improves by more than twice compared

to the classic case.

Full virtualization requires the virtualization of all hardware components, including:

a. The execution unit

b. CPU memory

c. Physical memory

d. Interrupts and signaling

e. Secondary memory

f. I/O interfaces

The access to the aforementioned elements reduces the flexibility and impact of the

algorithm on performance. Meanwhile, KVM, which relies on full virtualizaton

techniques, is much more transparent to the entities mentioned above.

Measurement results indicate that the HA system implemented with KVM and Perf+

demonstrates good performance.

CPU Performance

Description

The CPU performance will be analyzed, measured, and compared in the case of a

controlled system failure, resulting in real-time migration when the system is

implemented with KVM, with and without the Perf+ algorithm.

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

9

Results

• CPU performance of the HA system implemented with KVM.

Number of

failed

machines

Number of

pages

migrated

in iteration

I

Number of

pages

migrated

in iteration

II

Number of

pages

migrated

in iteration

III

Number of

pages

migrated

in iteration

IV

CPU

Utilization

8 VM 214 pages 105 pages 48 pages 21 pages 1.93% -

0.88%

Tabel 5 The CPU performance of the HA system implemented with KVM.

• CPU performance of the HA system implemented with KVM and the Perf+

algorithm.

Number of

failed

machines

Number of

pages

migrated in

iteration I

Number of

pages

migrated in

iteration II

Number of

pages

migrated in

iteration III

Number of

pages

migrated in

iteration IV

CPU

Utilization

8 VM 121 pages 64 pages 31 pages 17 pages 1.87% -

0.68%

Tabel 6 The CPU performance of the HA system implemented with KVM and Perf+.

As seen in the two tables above, the CPU performance improves when using the Perf+

Algorithm compared to the classic case. However, this performance improvement is

not as significant as observed in the case of memory. The reasons are:

a. The CPU performance in KVM does not have the same elasticity as memory.

b. The CPU load in KVM in this particular case is relatively low (talking about cases

in a few KB).

CPU utilization when 8 virtual machines fail is 1.87%.

Bandwidth

Description

 The bandwidth utilization will be analyzed, measured, and compared in the case of a

controlled system failure, resulting in real-time migration when the system is running

with KVM, with and without the Perf+ algorithm.

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

10

Results

• Bandwidth utilization of the HA system implemented with KVM

Number of

failed

machines

Number of

pages

migrated in

iteration I

Number of

pages

migrated in

iteration II

Number of

pages

migrated in

iteration III

Number of

pages

migrated in

iteration IV

Bandwidth

utilization

(Network

Adapter)

8 VM 214 pages 105 pages 48 pages 21 pages 42,5%

Tabela 7 Bandwidth utilization of the HA system implemented with KVM.

• Bandwidth utilization of the HA system implemented with KVM and the Perf+

algorithm.

Number of

failed

machines

Number of

pages

migrated

in iteration

I

Number of

pages

migrated

in iteration

II

Number of

pages

migrated

in iteration

III

Number of

pages

migrated

in iteration

IV

Bandwidth

utilization

(Network

Adapter)

8 VM 121 pages 64 pages 31 pages 17 pages 32,8%

Tabel 8 Bandwidth utilization of the HA system implemented with KVM and

Perf+.

As seen in the tables above, KVM has excellent performance in utilizing the traffic

passing through the network card. This performance continues to improve with the

utilization of the Perf+ algorithm. This is due to the full virtualizaton techniques that

the KVM hypervisor utilizes.

Bandwidth utilization when 8 virtual machines fail is 32.8%. The best performance is

achieved when the HA system is implemented with KVM and Perf+.

Data Losses

Description

The amount of data lost during the transfer of processes and resources will be

analyzed, measured, and compared in the case of a controlled system failure, resulting

in real-time migration when the system is implemented with KVM, with and without

the Perf+ algorithm.

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

11

Results

Using the LM Bench benchmark, the number of modified pages remaining in physical

memory is obtained. To get this number, it is sufficient to check the number of M bits

for each page using the integer counter.

• Lost data of the HA system implemented with KVM.

Number of

failed

machines

Number of

pages

migrated

in iteration

I

Number of

pages

migrated

in iteration

II

Number of

pages

migrated

in iteration

III

Number of

pages

migrated

in iteration

IV

Number of

lost pages

8 VM 214 pages 105 pages 48 pages 21 pages 7 pages

Tabela9 Lost data of the HA system with KVM.

• Lost data of the HA system implemented with KVM and the Perf+ algorithm.

Number of

failed

machines

Number of

pages

migrated

in iteration

I

Number of

pages

migrated

in iteration

II

Number of

pages

migrated

in iteration

III

Number of

pages

migrated

in iteration

IV

Number of

lost pages

8 VM 121 pages 64 pages 31 pages 17 pages 4 pages

Tabel 10 Lost data of the HA system with KVM and Perf+.

As seen, the best performance is achieved when the HA system is implemented with

KVM and Perf+.

Costs in terms of SLA (Service Level Agreement)

SLA Calculation for HA System Implemented with KVM

To analyze the costs in terms of SLA (Service Level Agreement) during a controlled

failure and resulting real-time migration, we will calculate the availability of the HA

system based on the formula for SLA.

Service Level Agreement (SLA) – The SLA is a transparent agreement between the

virtual machines' virtualization system and the service.

Availability Goal – The target availability time is 99.99995% within a month for Virtual

Machines (VMs). Availability will be calculated based on the following formula:

P=(TT−TUTTT) ×100P = \ left(\frac{TT - TUT}{TT} \right) \times 100

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

12

Where:

• P = Availability percentage

• TT = Total time of the month in milliseconds (30 days * 24 hours * 60 minutes

* 60,000 milliseconds = 2,592,000,000 ms)

• TUT = Total uptime (in milliseconds), which includes the downtime of the VM

due to planned interruptions.

In the SLA terms, virtual machines are considered unavailable to the virtualization

system when the node, or any of its components, is completely down or cannot be

accessed or used as per the terms, excluding any conditions arising due to any planned

events (as defined in standard terms).

Repair Time Objective – The repair time objective is set to be less than 1 hour from

the moment of alert that the VM is in a failure state.

By applying this SLA formula, we can measure the system's availability during failures

and migrations. The SLA cost is associated with the downtime and the time it takes to

restore service. The better the system's ability to meet the availability target, the lower

the SLA cost.

• The calculation of the SLA for the HA system implemented with KVM using

the Perf+ optimization algorithm.

 Nr i

makinave

të

dështura

SLA

%

8 VM 99.99999575617284

Number

of failed

machines

SLA

%

8 VM 99.99999189814818

Table 11 SLA Evaluation in the

HA System with KVM

Fig. 3 SLA Evaluation in the HA

KVM System

Table 12

The evaluation of the SLA in the HA system

with KVM and Perf+.

Fig. 4 The evaluation of the SLA in the

HA system implemented with KVM and

Perf+.

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

13

If an outage occurs in the time interval from 0 to 400 ms, 8 Virtual Machines in a

“faulty” state will be affected, and the availability is expected to be in the Defect-

Tolerant class.

Service Migration from Node 1 to Node 2

When Node 1 goes down, the virtualization system must ensure continuous service

delivery from the virtual machine. The connection between nodes should be configured

such that the service delivery delay is as close to 0 ms as possible, and in our

experimental system, this delay is in the order of microseconds. The migration from

Node 1 to Node 2 should utilize information or resources (or both) in such a way that

node duplication in the network is eliminated. Additionally, it ensures the control and

management of data.

Data is stored in backup files (Node 2) in case external factors cause issues. Therefore,

information should be transferred from Node 1 to Node 2 without any data loss. Given

the very small chance of data leakage, a protective mechanism for the “distortion” of

data encoding should be used during the transmission. Consequently, during the data

migration for storage or to prevent data loss, a security mechanism that includes content

masking of the information is employed.

CONCLUSIONS

The standard method for failure recovery involves shutting down the virtual machine

and starting it on another node. This method causes a significant disruption to the

services provided by the virtual machine. Another issue with the standard method is the

loss of connection between users and virtual machines. For this reason, it is necessary

for the user to reconnect to the virtual machine from the beginning once it is up and

running, causing extended downtime.

In this work, we developed an algorithm and implemented it so that Heartbeat manages

virtual machines in high availability clusters in real-time (live).

The developed solution consists of a modification made to the script init.d/x0 and the

creation of a process whose task is to execute on each node and remain on standby for

migration requests. The init.d/x0 script is used when a virtual machine needs to be

started, but if the virtual machine is already running somewhere in the cluster, this script

will send a real-time migration request instead of restarting the virtual machine.

According to this solution, the preferred method for repairing failures in the system is

the real-time migration of virtual machines between physical nodes in the cluster. This

method minimizes the interruptions caused by controlled failures (i.e., failures resulting

from the shutdown or restart of the node for maintenance reasons) compared to the

standard method.

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

14

To further improve real-time migration performance, the Perf+ Algorithm was

developed at the user level, which uses the Hash-MD5 technique to enhance

performance by ensuring that the same amount of information is migrated from one

virtual machine to another, utilizing less CPU, memory, and bandwidth. This reduces

the number of modified pages that need to be migrated, leading to benefits in reducing

the downtime experienced by our system due to a controlled failure of one of the

network nodes.

The real-time migration, along with the implementation of the Perf+ Algorithm in the

KVM full virtualizaton technique proposed for controlled failure recovery, ensures a

very minimal service interruption, in the tens of milliseconds, a downtime so small that

users do not notice it.

After implementing the Perf+ Algorithm, measurements were taken for: Downtime,

CPU performance, Bandwidth, Losses, and Costs during the transfer of modified pages.

The conclusion drawn was that the best performance was achieved by virtualization

with KVM and Perf+.

The results show that the interruptions are extremely short, and the client-server

connection is maintained during migration.

RECOMMENDATIONS

In order to increase flexibility, physical nodes should be equipped with a large amount

of RAM. The more RAM the system has, the more reliable and fault-tolerant it

becomes.

To achieve more efficient migration, a dedicated KVM network and its virtual machines

can be configured. This way, the internal network of a company is not affected by

virtual machine migrations. This measure will further reduce the impact that live

migration of virtual machines has on critical services.

Finally, to maintain data integrity on the shared disk ("shared storage"), the

configuration of "STONITH" and "fencing" is necessary. This prevents the

simultaneous access of the same data block by two or more nodes.

REFERENCES

A survey of virtualization technologies with performance testing. (2010). *arXiv e-

Prints*. https://arxiv.org/abs/1010.3233

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,

Pratt, I., & Warfield, A. (2003). Xen and the art of virtualization. In Proceedings

of the 19th ACM Symposium on Operating Systems Principles, 164–177.

https://doi.org/10.1145/945445.945462

Chiueh, S. N. T. C., & Brook, S. (2005). A survey on virtualization technologies. Rpe

Report, 142.

 European Journal of Computer Science and Information Technology, 13 (1), 1-15, 2025

 Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

15

Choudhary, A., Govil, M. C., Singh, G., Awasthi, L., Pilli, E. P., & Kapil, D. (2017). A

critical survey of live virtual machine migration techniques.

Daniels, J. (2009). Server virtualization architecture and implementation. XRDS:

Crossroads, The ACM Magazine for Students, 16(1), 8-12.

Douglis, F., & Krieger, O. (2013). Virtualization. IEEE Internet Computing, 17(2), 6-

9.

DuVisor: A user-level hypervisor through delegated virtualization. (2022). *arXiv e-

Prints*. https://arxiv.org/abs/2201.09652

DuVisor: A user-level hypervisor through delegated virtualization. (2022). *arXiv e-

Prints*. https://arxiv.org/abs/2201.09652

G-KVM: A full GPU virtualization on KVM. (2016). *IEEE Xplore Digital Library*.

https://doi.org/10.1109/ACCESS.2016.7876385

Jayshri, S., & Mehta, R. (2015). A technical review on comparison of Xen and KVM

hypervisors. *International Journal of Advanced Research in Computer and

Communication Engineering, 3*(D). Retrieved from https://ijarcce.com

KHV: KVM-based heterogeneous virtualization. (2022). *MDPI Electronics, 11*(16).

https://doi.org/10.3390/electronics11162631

Kolyshkin, K. (2006). Virtualization in linux. White paper, OpenVZ, 3(39), 8.

Miloji, D. S., Douglis, F., Paindaveine, Y., Wheeler, R., & Zhou, S. (2006). Process

migration. ACM Computing Surveys, 32(3), 241–299.

Pasunuru, S. (n.d.). KVM-based virtualization and remote management. *Semantic

Scholar*. Retrieved from https://www.semanticscholar.org

Performance exploration of virtualization systems. (2021). *arXiv e-Prints*.

https://arxiv.org/abs/2103.07092

Portnoy, M. (2012). Virtualization essentials (Vol. 19). John Wiley & Sons.

Power consumption of virtualization technologies: An empirical investigation. (2015).

arXiv e-Prints. https://arxiv.org/abs/1511.01232

Temporal isolation among virtual machines. (n.d.). *Wikipedia*. Retrieved from

https://en.wikipedia.org/wiki/Temporal_isolation_among_virtual_machines

Zhou, F. F., Ma, R. H., Li, J., et al. (2016). Optimizations for high-performance network

virtualization. Journal of Computer Science and Technology, 31(1), 107–116.

https://doi.org/10.1007/s11390-016-1614-x

