European Journal of Computer Science and Information Technology (EJCSIT)

EA Journals

Musical Genre Classification of Recorded Songs based on Music Structure Similarity

Abstract

Automatic music genre classification is a research area that is increasing in popularity. Most researchers on this research area have been focusing on combining information from different sources than the musical signal itself. This paper presents a novel approach for the automatic music genre classification problem using audio signal for the context of Sri Lankan Music. The proposed approach uses two feature vectors and Support Vector Machine (SVM) classifier with radial-basis kernel function. More specifically, two feature sets for representing frequency domain, temporal domain, cepstral domain and modulation frequency domain audio features are proposed through this work. Music genre classification accuracy of 74.5% was recorded as the highest overall classification accuracy on our dataset containing over 100 songs over the five musical genres. This approach shows that it is possible to implement a genre classification model with a reasonably good accuracy by using different types of domain based audio features.

Keywords: Audio Signal Analysis, Feature Extraction, Music Information Retrieval, Musical Genre Classification, SVM

cc logo

This work by European American Journals is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License

 

Recent Publications

Email ID: editor.ejcsit@ea-journals.org
Impact Factor: 7.80
Print ISSN: 2054-0957
Online ISSN: 2054-0965
DOI: https://doi.org/10.37745/ejcsit.2013

Author Guidelines
Submit Papers
Review Status

 

Scroll to Top

Don't miss any Call For Paper update from EA Journals

Fill up the form below and get notified everytime we call for new submissions for our journals.