European Journal of Computer Science and Information Technology (EJCSIT)

EA Journals

Machine Learning for Core Banking System Anomaly Detection: From Batch to Stream Processing

Abstract

This article examines the evolution of anomaly detection techniques in core banking systems, transitioning from traditional batch processing to modern stream processing approaches powered by machine learning. We explore how financial institutions have historically addressed fraud detection and system vulnerabilities, and detail the significant paradigm shift toward real-time analysis. The paper presents empirical evidence of increased detection efficiency, reduced false positives, and enhanced security posture in banking environments. Through case studies, technical implementations, and quantitative analysis, we demonstrate how stream processing architectures leveraging ML algorithms provide superior protection for modern banking infrastructure compared to conventional methods.

Keywords: Fraud Detection, anomaly detection, core banking systems, machine learning, stream processing

cc logo

This work by European American Journals is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License

 

Recent Publications

Email ID: editor.ejcsit@ea-journals.org
Impact Factor: 7.80
Print ISSN: 2054-0957
Online ISSN: 2054-0965
DOI: https://doi.org/10.37745/ejcsit.2013

Author Guidelines
Submit Papers
Review Status

 

Scroll to Top

Don't miss any Call For Paper update from EA Journals

Fill up the form below and get notified everytime we call for new submissions for our journals.