European Journal of Computer Science and Information Technology (EJCSIT)

EA Journals

Cracking the Code: How Deep Learning unmasks Complex Fraud Schemes

Abstract

In the fast-paced and high-stakes world of finance, the fight against fraud is a continuous and evolving challenge. Deep learning has emerged as a revolutionary tool, capable of processing vast amounts of data and predicting sophisticated fraud patterns with unprecedented accuracy. Unlike traditional rule-based systems, which remain static and predictable, deep learning models dynamically adapt to the ever-changing tactics employed by fraudsters, offering a level of detection that was previously unattainable. Our research delves into the use of advanced transformer models and pre-training techniques, which significantly enhance the precision and flexibility of fraud detection systems. However, implementing deep learning is not without its challenges, including issues related to data quality and the inherent complexity of these models, often referred to as their “black box” nature. Despite these challenges, the benefits are substantial: deep learning not only identifies elusive fraud schemes but also reduces the incidence of false positives, which can be costly and disruptive. Financial institutions are increasingly integrating deep learning with traditional detection methods to create a more robust and comprehensive defense against fraud. Advances in explainable AI are helping to demystify these complex models, making them more transparent and easier to understand. Additionally, transfer learning is enhancing the efficiency of these systems, allowing models trained on one task to be adapted for others with minimal data. This research underscores the critical role of deep learning in strengthening financial systems, providing a formidable barrier against fraud that evolves as quickly as the threats themselves. As financial institutions continue to adopt and refine these technologies, the potential for deep learning to transform fraud detection and prevention is immense. This makes deep learning an indispensable asset in the ongoing battle to protect financial integrity and security.

 

Keywords: deep learning, explainable AI, financial fraud detection, transfer learning, transformer models

cc logo

This work by European American Journals is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License

 

Recent Publications

Email ID: editor.ejcsit@ea-journals.org
Impact Factor: 7.80
Print ISSN: 2054-0957
Online ISSN: 2054-0965
DOI: https://doi.org/10.37745/ejcsit.2013

Author Guidelines
Submit Papers
Review Status

 

Scroll to Top

Don't miss any Call For Paper update from EA Journals

Fill up the form below and get notified everytime we call for new submissions for our journals.