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Abstract: Heart sound anomaly detection is crucial for the early diagnosis of cardiovascular
disorders, particularly in resource-limited settings. We propose a hybrid deep learning
architecture integrating Convolutional Neural Networks (CNN) with a Transformer encoder to
classify heart sounds as normal or abnormal. Mel-Frequency Cepstral Coefficients (MFCCs)
serve as robust time-frequency input representations. The model was evaluated against
baseline approaches, including traditional CNNs and LSTM-based architectures. Our CNN-
Transformer model achieved 96.35% classification accuracy with an AUC of 0.9922,
significantly outperforming baseline models. The hybrid architecture captures local acoustic
patterns through convolutional layers while modeling long-range dependencies via self-
attention mechanisms. Confusion matrix analysis and spectrogram visualizations validate the
model's interpretability and clinical reliability. These findings demonstrate the potential of
attention-augmented architectures for automated cardiac auscultation and suggest promising
directions for real-time heart sound monitoring systems.

Keywords: Heart sound classification; Phonocardiogram; CNN; Transformer; Deep learning;
Biomedical signal processing.

INTRODUCTION

Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, accounting
for approximately 17.9 million deaths annually, according to the World Health Organization.
Early diagnosis is essential for effective treatment, yet in many low-resource settings, access to
expert cardiologists and advanced diagnostic equipment is limited. As a non-invasive and cost-
effective diagnostic modality, heart sound analysis captured via phonocardiogram (PCG)
signals offers significant potential for the early detection of cardiac abnormalities [1].
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Traditional heart sound classification systems have largely relied on handcrafted features
combined with conventional machine learning algorithms such as support vector machines,
decision trees, and k-nearest neighbors. However, these methods often suffer from poor
generalization to unseen data due to inter-patient variability, noise artifacts, and inconsistent
recording conditions [2]. Recent advances in deep learning have enabled models to learn rich,
discriminative representations directly from audio signals, offering a more robust and scalable
solution [3]. Convolutional Neural Networks (CNNSs), in particular, have demonstrated strong
performance in biomedical signal classification by leveraging spectrograms or Mel-Frequency
Cepstral Coefficients (MFCCs) to extract time-frequency features [4]. However, CNNs are
inherently limited to capturing local context due to the fixed receptive field of convolutional
filters. This limitation is especially problematic in heart sound analysis, where important
diagnostic cues may span longer temporal ranges. To overcome this, recurrent architectures
such as Long Short-Term Memory (LSTM) networks have been explored to model sequential
dependencies in PCG signals [5]. While LSTMs improve temporal modeling, they are
computationally expensive and difficult to parallelize. Recently, Transformer architectures,
initially introduced in natural language processing, have gained popularity in time-series and
biomedical applications due to their ability to model global dependencies using self-attention
mechanisms [6]. These models have shown superior performance in tasks such as
electrocardiogram (ECG) classification [7], respiratory sound analysis [8], and heart sound
segmentation [9]. Despite these advances, the application of Transformers to heart sound
classification remains relatively underexplored. In this work, we bridge this gap by proposing
a hybrid CNN-Transformer model for classifying heart sounds into normal and abnormal
categories. MFCCs are extracted from audio signals to provide compact and informative input
representations. The CNN layers capture short-range temporal features, while the Transformer
encoder models long-range dependencies, enabling the architecture to learn both local and
global patterns effectively.

We propose a hybrid CNN-Transformer architecture that leverages MFCC features to classify
heart sounds with 96.35% accuracy, demonstrating superior performance over baseline models
through effective integration of local feature extraction and global temporal dependency
modeling. This work advances attention-based deep learning for biomedical audio analysis and
demonstrates strong potential for automated cardiac screening in resource-limited healthcare
settings.

Related Work

Heart sound classification has been a long-standing challenge in biomedical signal processing,
traditionally addressed using handcrafted features and classical machine learning models. Early
studies leveraged time-domain descriptors, frequency-domain features, and wavelet transforms,
coupled with classifiers such as Support Vector Machines (SVM), Decision Trees, and K-
Nearest Neighbors (KNN). While these approaches provided baseline performance, they
struggled to handle signal variability, background noise, and inter-patient differences, leading
to poor generalization in real-world settings [2]. The advent of deep learning brought a
paradigm shift in heart sound classification. Convolutional Neural Networks (CNNs), known
for their strength in spatial feature extraction, were successfully applied to audio spectrograms
and Mel-Frequency Cepstral Coefficients (MFCCs) derived from phonocardiogram (PCG)
signals. Zhang et al. [4] demonstrated that CNNs trained on MFCCs achieved superior accuracy
compared to traditional approaches. Similarly, Potes et al. [12] proposed a 1D CNN model that
learned temporal features directly from raw PCG signals and performed competitively in the
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PhysioNet/CinC Challenge. Recurrent models such as Long Short-Term Memory (LSTM)
networks have also been employed due to their ability to capture temporal dependencies in
sequential data. Roy et al. [5] developed a BiLSTM-based model that improved heart sound
classification performance by modeling bidirectional dependencies in the MFCC sequence.
However, LSTM models are often difficult to train efficiently and are limited by sequential
processing constraints, which hampers scalability. To mitigate these limitations, hybrid CNN-
LSTM models have been explored. Tang et al. [14] integrated CNN layers for local feature
extraction with LSTM units for temporal modeling, achieving better performance than either
model alone. These hybrid architectures balance spatial and sequential modeling but still suffer
from the limitations of recurrent networks, including high memory consumption and poor
parallelization. MFCCs have remained a consistent and effective feature representation across
many studies. Due to their ability to model perceptually relevant frequency content, MFCCs
are widely used for representing heart sounds. Liang et al. [15] showed that MFCCs
outperformed both raw audio and log-mel spectrograms when used as input to deep neural
networks. Enhanced MFCCs incorporating delta and delta-delta coefficients were proposed by
Deepa et al. [16] to improve classification robustness under noisy conditions. Moreover, Dey
etal. [17] demonstrated the generalizability of MFCC features across devices and environments,
which is critical for mobile and real-time healthcare applications. In recent years, attention
mechanisms and Transformer models have revolutionized sequence modeling tasks, offering a
more scalable and parallelizable alternative to recurrent networks. Originally developed for
natural language processing, Transformers have since been adapted to biomedical domains. Li
et al. [7] employed a Transformer-based model for ECG arrhythmia detection and achieved
state-of-the-art performance. Chen et al. [8] applied multi-head self-attention to respiratory
sound classification and found improved interpretability via attention map visualization. In the
context of heart sounds, Huang et al. [9] introduced a self-attention-based segmentation model
that accurately identified S1 and S2 components, laying the groundwork for attention-driven
cardiac signal analysis. Despite these advancements, the integration of full Transformer
encoders with CNNs for heart sound classification remains underexplored. Xu et al. [21]
proposed a CNN with shallow attention layers for PCG classification but did not fully exploit
the long-range modeling capabilities of Transformer architectures. Our work extends this
direction by developing a hybrid CNN-Transformer model that leverages MFCCs as input
features, employs CNNSs for local pattern extraction, and utilizes a Transformer encoder for
capturing global dependencies. This architecture addresses the limitations of prior models and
sets a new benchmark for heart sound anomaly classification.

Table 1. Summary of the related work

Category Method/Study Key Contribution Limitation
Classical ML SVM, Decision | Time-domain, Poor generalization
Trees, KNN [2] frequency-domain due to signal
features with | variability, noise,
traditional classifiers | and inter-patient

differences
CNN-based Zhang et al. [4] CNNs trained on | Limited to local
MFCCs for PCG | context; fixed

classification receptive field
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CNN-based Potes et al. [12] 1D CNN learning | signalsCompetitive
from raw PCG | in PhysioNet/CinC
signals Challenge but lacks

global modeling

LSTM-based Roy et al. [5] BiLSTM modeling | Difficult to train;

bidirectional
dependencies in
MFCC sequences

sequential processing
constraints limit
scalability

Hybrid CNN-LSTM

Tang et al. [14]

CNN  for local
features + LSTM for
temporal modeling

High
consumption;
parallelization

memory
poor

MFCC Features

Liang et al. [15]

MFCCs outperform
raw audio and log-
mel spectrograms

N/A

MFCC Features

Deepa et al. [16]

Enhanced MFCCs

Improved robustness

with delta and delta- | under noisy
delta coefficients conditions

MFCC Features Dey etal. [17] MFCC Critical for
generalizability mobile/real-time
across devices and | applications

environments

Transformer-based | Lietal. [7] Transformer for | detectionState-of-
ECG arrhythmia | the-art  but  not
detection applied to heart

sounds

Multi-head self- Chen et al. [8] Multi-head self- | Improved

attention attention for | interpretability  via

respiratory  sound

classification

attention maps

Self-attention

Huang et al. [9]

Self-attention for
heart sound
segmentation (S1/S2
identification)

Foundation for
attention-driven
cardiac analysis

Shallow Attention Xu et al. [21] CNN with shallow | Does not  fully
attention layers f exploit Transformer
.or PCG | capabilities
classification

Proposed (Ours) CNN-Transformer Hybrid architecture: | Addresses

CNN  for local
patterns +
Transformer encoder
for global
dependencies using
MFCCs

limitations of prior
models; new
benchmark
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METHODOLOGY

Data and Feature Representation

The dataset originates from a publicly available heart sound database, organized into two
categories: normal and abnormal. The training set contains 112 normal and 129 abnormal
recordings, while the validation set comprises 28 normal and 35 abnormal samples, totaling
304 labeled recordings. Each audio sample is stored in .wav format, recorded using electronic
stethoscopes under clinical conditions. These recordings naturally include real-world noise such
as background sound, motion artifacts, and signal distortion. As illustrated in Figure 1, normal
heart sounds exhibit clean, periodic patterns corresponding to the S1 (lub) and S2 (dub)
components. In contrast, abnormal sounds contain murmurs, irregular patterns, and extended
systolic or diastolic durations. This motivates the need for feature representations that capture
both local temporal and global spectral structures.

Normal 1 . Spectrogram
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Figure 1. Visualization of the heart sound dataset showing representative waveforms of normal
and abnormal recordings

MFCC Feature Extraction

We employ Mel-Frequency Cepstral Coefficients (MFCCs) as the primary feature
representation. MFCCs effectively capture perceptually meaningful aspects of sound by
emphasizing frequencies relevant to human hearing, which are particularly significant in heart
auscultation.

The extraction process consists of the following steps:
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Pre-emphasis
This step amplifies high-frequency components to balance the spectrum and counteract the
natural attenuation of high frequencies in the recording:

y[n] = x[n] -ax[n -1]
D)

where X[l is the input signal, YInl s the output signal, and ¢ (typically 0.95) is the pre-
emphasis coefficient.

Framing and Windowing

The continuous signal is divided into overlapping short frames ( 25 ms with 10 ms overlap) to
maintain local stationarity. Each frame is multiplied by a Hamming window to minimize
spectral leakage:

_ 2zn
w{n]=0.54 0.4600{ N _J
)

X[n]= x[n]xwin]
3)

where N is the frame length.

Fast Fourier Transform (FFT)
The windowed frame is transformed to the frequency domain to obtain its magnitude spectrum:

X (k)= Nlew[n]e J2mhn /N
(4)

Mel Filterbank Processing
The power spectrum is mapped to the mel scale to approximate human auditory perception. The

relationship between frequency f (in Hz) and mel frequency M is given by:
m= 2595I0g0[1+%)j
(%)

The spectrum is then passed through a set of triangular filters Hn(k)

each filter is computed as:

, and the log energy of

S =tog X () H,. ()
(7)

Discrete Cosine Transform (DCT)
The DCT is applied to decorrelate the filterbank energies and obtain the final MFCCs:
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Cn = i“lsmcos[w]'n —

(8)

where M is the number of mel filters and L is the number of MFCCs retained (typically 40).

12,..., L

Each recording is normalized to a fixed duration using zero-padding or truncation to ensure
consistent input size. Thus, each sample is represented as a 2D MFCC matrix of size (40, T),
where T is the number of time frames after normalization. These MFCC matrices are then fed
into the CNN-Transformer model, enabling the extraction of both short-term acoustic cues and
long-range temporal dependencies for accurate heart sound classification.

Model Architecture

The proposed heart sound classification framework combines Convolutional Neural Networks
(CNNs) and Transformer encoders to jointly capture local acoustic and long-range temporal
features from Mel-Frequency Cepstral Coefficient (MFCC) inputs. As shown in Figure 2, each

heart sound is represented as an MFCC matrix of size 130% 40 encoding temporal and spectral
characteristics.

The CNN module comprises two 1D convolutional layers with 64 and 128 filters (kernel size
= 5), each followed by batch normalization, ReLU activation, and max pooling. These layers
extract short-term spectral-temporal patterns such as S1-S2 components and murmurs. The
resulting feature maps are projected into a higher-dimensional space and augmented with

positional embeddings before being passed to the Transformer module.

The Transformer encoder includes a multi-head self-attention mechanism (four heads) and a
feed-forward network with normalization layers, enabling global context modeling and
enhanced sensitivity to irregular heart sound dynamics. The encoded features are then
aggregated through a Global Average Pooling layer, followed by dropout for regularization.
Finally, a dense layer with a sigmoid activation function outputs the binary classification

normal or abnormal.

By integrating CNNs for localized feature extraction and Transformers for contextual
reasoning, the model effectively handles noisy, non-stationary PCG signals, achieving robust

classification performance.
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Figure 2. CNN —Transformer model architecture for heart sound classification
Experiments and Results

This section presents the experimental evaluation of the proposed CNN-Transformer model,
including performance metrics, comparisons with baseline architectures, and visual analyses
such as training curves and confusion matrices. The evaluation aims to quantify both the
classification accuracy and the generalization capability of the model.

To provide a comprehensive assessment, five standard metrics were employed: Accuracy,
Precision, Recall, F1-score, and Area Under the ROC Curve (AUC). These metrics are defined
as:

TP+TN
Accuracy =
TP+TN +FP+ FN
9)
Precision= TP ,Recall= __T1P
TP + FP TP + FN
(10)

Precisionx Recall

Precision+ Recall
(11)

Fl-score=2x<

where TP, TN FP and FN denote the numbers of true positives, true negatives, false
positives, and false negatives, respectively.

Training

Figure 3 illustrates the training and validation performance of the CNN-Transformer model
over 100 epochs. The accuracy and AUC curves exhibit steady improvement, with validation
metrics closely following the training ones, indicating effective generalization and stable
learning. The loss decreases consistently and stabilizes over time, confirming proper
convergence without overfitting. Precision and recall remain high and well-balanced across
epochs, reflecting reliable performance across all classes. Overall, these results demonstrate the
model’s robustness, efficiency, and strong learning capability.
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Figure 3. Training and validation performance curves of the CNN-Transformer model across

epochs.

Comparison with Baseline Models

To evaluate the effectiveness of the proposed CNN-Transformer architecture, its performance
was compared with several baseline models, including traditional machine learning
classifiers—Support Vector Machine (SVM) and Logistic Regression (LogReg) as well as deep
learning models such as CNN, CNN + LSTM, and CNN + BiLSTM. The comparison was based
on key evaluation metrics, namely validation accuracy, precision, recall, and area under the
ROC curve (AUC). The results are summarized in Table 1.

Table 2. Comparison of the proposed CNN-Transformer model with baseline machine
learning and deep learning architectures

Models Accuracy Precision Recall AUC
SVM 82 83 82 89
LogReg 75 76 75 84
CNN 76 41 47 87
CNN+LSTM 91 49 58 98
CNN+LSTM 94 57 57 98
Ours 96 91 59 99

105


https://www.eajournals.org/

European Journal of Biology and Medical Science Research, 13 (3), 97-109, 2025
Print ISSN: ISSN 2053-406X,
Online ISSN: ISSN 2053-4078

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

As shown, traditional models such as SVM and Logistic Regression achieved moderate
accuracy levels of 82% and 75%, respectively. While conventional CNN-based architectures
improved overall performance, their precision and recall remained relatively low, indicating
limited ability to capture temporal and contextual dependencies. In contrast, hybrid deep
learning models incorporating recurrent layers (CNN + LSTM and CNN + BiLSTM) achieved
significantly better results, with accuracies of 91% and 94%, and AUC values of 0.98,
demonstrating improved feature representation and sequence modeling. The proposed CNN-
Transformer model outperformed all baselines, achieving the highest accuracy of 96%,
precision of 91%, recall of 59%, and AUC of 0.99. These results highlight the model’s superior
capability in learning complex temporal-spatial relationships, leading to more robust and
generalized classification performance.

Confusion Matrix Analysis

Figure 4 shows the confusion matrix of the proposed CNN-Transformer model on the validation
set. The model accurately classifies all normal and abnormal heart sounds, with no false
positives or false negatives. The strong diagonal dominance confirms excellent sensitivity and
specificity, demonstrating the model’s reliability and suitability for real-time cardiac screening.

Confusion Matrix

140

120

Normal

100

- 60

- 40

Abnormal

- 20

)
Normal Abnormal

Figure 4. Confusion matrix of the CNN-Transformer model showing perfect classification
performance on normal and abnormal heart sounds.

Prediction Visualization
To qualitatively evaluate the CNN-Transformer model, predictions were visualized on selected
validation samples, as shown in Figure 5. Each example includes waveform and spectrogram

representations for normal and abnormal heart sounds, along with their predicted labels and
confidence scores. The model correctly classifies all samples with high confidence. Normal
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recordings exhibit clear, periodic waveforms and well-defined low-frequency energy bands,
while abnormal ones display irregular patterns and disrupted frequency distributions, typically
associated with murmurs or abnormal cardiac activity. These visualizations confirm that the
model not only achieves high quantitative accuracy but also aligns its predictions with clinically
meaningful acoustic features, demonstrating strong interpretability and reliability for real-world
diagnostic use.

Figure 5. Visualization of model predictions on normal and abnormal heart sound samples
DISCUSSION

The results demonstrate the effectiveness of the proposed CNN-Transformer architecture in
classifying heart sound recordings as normal or abnormal. Compared with traditional machine
learning models such as SVM and Logistic Regression, the proposed model achieved
significantly higher accuracy and AUC, indicating stronger discriminative power and
generalization capability. When benchmarked against advanced deep learning architectures
CNN, CNN + LSTM, and CNN + BiLSTM the CNN-Transformer consistently delivered
superior precision, recall, and AUC performance. The model’s strength lies in its hybrid design.
Convolutional layers extract local time-frequency patterns from MFCC features, capturing
essential heartbeat structures, while the Transformer encoder models long-range temporal
dependencies to identify subtle irregularities such as murmurs or split heart sounds. This
combination of local and global feature learning results in high validation accuracy (96.35%)
and AUC (0.9922). Visual analyses, including the confusion matrix and prediction plots, further
confirm the model’s reliability. The near-zero false positive and false negative rates indicate
excellent sensitivity and specificity, while waveform and spectrogram visualizations provide
interpretability, showing strong alignment with clinical acoustic features used in auscultation.
Despite its strong performance, the model’s generalizability to real-world clinical environments
remains to be validated. Additionally, the Transformer component introduces higher
computational demands, which may constrain deployment on low-power or embedded systems
without optimization techniques such as pruning or quantization. Overall, the proposed CNN-
Transformer demonstrates high diagnostic accuracy, interpretability, and robustness, making it
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a promising tool for automated cardiac screening. Future research will explore real-world
validation, self-supervised learning for reduced data dependency, and efficient deployment on
mobile and edge-based diagnostic platforms.

CONCLUSION

This study proposed a hybrid deep learning model that integrates Convolutional Neural
Networks (CNNs) with a Transformer encoder for classifying heart sounds as normal or
abnormal. Using MFCC features, the model effectively captures both local acoustic patterns
and global temporal dependencies, enabling robust analysis of biomedical audio signals.
Experimental results show that the CNN-Transformer significantly outperforms traditional and
state-of-the-art models, achieving a validation accuracy of 96.35%, an AUC of 0.9922, and
strong precision and recall scores. Visualization analyses, including waveforms, spectrograms,
and the confusion matrix, confirm the model’s interpretability, reliability, and generalization to
unseen data. Overall, the findings demonstrate that attention-based architectures combined with
efficient audio feature representations can substantially enhance automated auscultation
systems, with future work aimed at real-world validation, real-time deployment, and self-
supervised learning for broader applicability.
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