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Abstract: Heart sound anomaly detection is crucial for the early diagnosis of cardiovascular 

disorders, particularly in resource-limited settings. We propose a hybrid deep learning 

architecture integrating Convolutional Neural Networks (CNN) with a Transformer encoder to 

classify heart sounds as normal or abnormal. Mel-Frequency Cepstral Coefficients (MFCCs) 

serve as robust time-frequency input representations. The model was evaluated against 

baseline approaches, including traditional CNNs and LSTM-based architectures. Our CNN-

Transformer model achieved 96.35% classification accuracy with an AUC of 0.9922, 

significantly outperforming baseline models. The hybrid architecture captures local acoustic 

patterns through convolutional layers while modeling long-range dependencies via self-

attention mechanisms. Confusion matrix analysis and spectrogram visualizations validate the 

model's interpretability and clinical reliability. These findings demonstrate the potential of 

attention-augmented architectures for automated cardiac auscultation and suggest promising 

directions for real-time heart sound monitoring systems. 

Keywords: Heart sound classification; Phonocardiogram; CNN; Transformer; Deep learning; 

Biomedical signal processing. 

 

 

INTRODUCTION 

Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, accounting 

for approximately 17.9 million deaths annually, according to the World Health Organization. 

Early diagnosis is essential for effective treatment, yet in many low-resource settings, access to 

expert cardiologists and advanced diagnostic equipment is limited. As a non-invasive and cost-

effective diagnostic modality, heart sound analysis captured via phonocardiogram (PCG) 

signals offers significant potential for the early detection of cardiac abnormalities [1]. 
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Traditional heart sound classification systems have largely relied on handcrafted features 

combined with conventional machine learning algorithms such as support vector machines, 

decision trees, and k-nearest neighbors. However, these methods often suffer from poor 

generalization to unseen data due to inter-patient variability, noise artifacts, and inconsistent 

recording conditions [2]. Recent advances in deep learning have enabled models to learn rich, 

discriminative representations directly from audio signals, offering a more robust and scalable 

solution [3]. Convolutional Neural Networks (CNNs), in particular, have demonstrated strong 

performance in biomedical signal classification by leveraging spectrograms or Mel-Frequency 

Cepstral Coefficients (MFCCs) to extract time-frequency features [4]. However, CNNs are 

inherently limited to capturing local context due to the fixed receptive field of convolutional 

filters. This limitation is especially problematic in heart sound analysis, where important 

diagnostic cues may span longer temporal ranges. To overcome this, recurrent architectures 

such as Long Short-Term Memory (LSTM) networks have been explored to model sequential 

dependencies in PCG signals [5]. While LSTMs improve temporal modeling, they are 

computationally expensive and difficult to parallelize. Recently, Transformer architectures, 

initially introduced in natural language processing, have gained popularity in time-series and 

biomedical applications due to their ability to model global dependencies using self-attention 

mechanisms [6]. These models have shown superior performance in tasks such as 

electrocardiogram (ECG) classification [7], respiratory sound analysis [8], and heart sound 

segmentation [9]. Despite these advances, the application of Transformers to heart sound 

classification remains relatively underexplored. In this work, we bridge this gap by proposing 

a hybrid CNN-Transformer model for classifying heart sounds into normal and abnormal 

categories. MFCCs are extracted from audio signals to provide compact and informative input 

representations. The CNN layers capture short-range temporal features, while the Transformer 

encoder models long-range dependencies, enabling the architecture to learn both local and 

global patterns effectively. 

We propose a hybrid CNN-Transformer architecture that leverages MFCC features to classify 

heart sounds with 96.35% accuracy, demonstrating superior performance over baseline models 

through effective integration of local feature extraction and global temporal dependency 

modeling. This work advances attention-based deep learning for biomedical audio analysis and 

demonstrates strong potential for automated cardiac screening in resource-limited healthcare 

settings. 

Related Work 

Heart sound classification has been a long-standing challenge in biomedical signal processing, 

traditionally addressed using handcrafted features and classical machine learning models. Early 

studies leveraged time-domain descriptors, frequency-domain features, and wavelet transforms, 

coupled with classifiers such as Support Vector Machines (SVM), Decision Trees, and K-

Nearest Neighbors (KNN). While these approaches provided baseline performance, they 

struggled to handle signal variability, background noise, and inter-patient differences, leading 

to poor generalization in real-world settings [2]. The advent of deep learning brought a 

paradigm shift in heart sound classification. Convolutional Neural Networks (CNNs), known 

for their strength in spatial feature extraction, were successfully applied to audio spectrograms 

and Mel-Frequency Cepstral Coefficients (MFCCs) derived from phonocardiogram (PCG) 

signals. Zhang et al. [4] demonstrated that CNNs trained on MFCCs achieved superior accuracy 

compared to traditional approaches. Similarly, Potes et al. [12] proposed a 1D CNN model that 

learned temporal features directly from raw PCG signals and performed competitively in the 
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PhysioNet/CinC Challenge. Recurrent models such as Long Short-Term Memory (LSTM) 

networks have also been employed due to their ability to capture temporal dependencies in 

sequential data. Roy et al. [5] developed a BiLSTM-based model that improved heart sound 

classification performance by modeling bidirectional dependencies in the MFCC sequence. 

However, LSTM models are often difficult to train efficiently and are limited by sequential 

processing constraints, which hampers scalability. To mitigate these limitations, hybrid CNN-

LSTM models have been explored. Tang et al. [14] integrated CNN layers for local feature 

extraction with LSTM units for temporal modeling, achieving better performance than either 

model alone. These hybrid architectures balance spatial and sequential modeling but still suffer 

from the limitations of recurrent networks, including high memory consumption and poor 

parallelization. MFCCs have remained a consistent and effective feature representation across 

many studies. Due to their ability to model perceptually relevant frequency content, MFCCs 

are widely used for representing heart sounds. Liang et al. [15] showed that MFCCs 

outperformed both raw audio and log-mel spectrograms when used as input to deep neural 

networks. Enhanced MFCCs incorporating delta and delta-delta coefficients were proposed by 

Deepa et al. [16] to improve classification robustness under noisy conditions. Moreover, Dey 

et al. [17] demonstrated the generalizability of MFCC features across devices and environments, 

which is critical for mobile and real-time healthcare applications. In recent years, attention 

mechanisms and Transformer models have revolutionized sequence modeling tasks, offering a 

more scalable and parallelizable alternative to recurrent networks. Originally developed for 

natural language processing, Transformers have since been adapted to biomedical domains. Li 

et al. [7] employed a Transformer-based model for ECG arrhythmia detection and achieved 

state-of-the-art performance. Chen et al. [8] applied multi-head self-attention to respiratory 

sound classification and found improved interpretability via attention map visualization. In the 

context of heart sounds, Huang et al. [9] introduced a self-attention-based segmentation model 

that accurately identified S1 and S2 components, laying the groundwork for attention-driven 

cardiac signal analysis. Despite these advancements, the integration of full Transformer 

encoders with CNNs for heart sound classification remains underexplored. Xu et al. [21] 

proposed a CNN with shallow attention layers for PCG classification but did not fully exploit 

the long-range modeling capabilities of Transformer architectures. Our work extends this 

direction by developing a hybrid CNN-Transformer model that leverages MFCCs as input 

features, employs CNNs for local pattern extraction, and utilizes a Transformer encoder for 

capturing global dependencies. This architecture addresses the limitations of prior models and 

sets a new benchmark for heart sound anomaly classification. 

Table 1. Summary of the related work 

Category 

 

Method/Study Key Contribution Limitation 

Classical ML SVM, Decision 

Trees, KNN [2] 

Time-domain, 

frequency-domain 

features with 

traditional classifiers 

Poor generalization 

due to signal 

variability, noise, 

and inter-patient 

differences 

CNN-based Zhang et al. [4] CNNs trained on 

MFCCs for PCG 

classification 

Limited to local 

context; fixed 

receptive field 
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CNN-based Potes et al. [12] 1D CNN learning 

from raw PCG 

signals 

signalsCompetitive 

in PhysioNet/CinC 

Challenge but lacks 

global modeling 

LSTM-based Roy et al. [5] BiLSTM modeling 

bidirectional 

dependencies in 

MFCC sequences 

Difficult to train; 

sequential processing 

constraints limit 

scalability 

Hybrid CNN-LSTM Tang et al. [14] CNN for local 

features + LSTM for 

temporal modeling 

High memory 

consumption; poor 

parallelization 

MFCC Features Liang et al. [15] MFCCs outperform 

raw audio and log-

mel spectrograms 

N/A 

MFCC Features Deepa et al. [16] Enhanced MFCCs 

with delta and delta-

delta coefficients 

Improved robustness 

under noisy 

conditions 

MFCC Features Dey et al. [17] MFCC 

generalizability 

across devices and 

environments 

Critical for 

mobile/real-time 

applications 

Transformer-based Li et al. [7] Transformer for 

ECG arrhythmia 

detection 

detectionState-of-

the-art but not 

applied to heart 

sounds 

Multi-head self-

attention 

Chen et al. [8] Multi-head self-

attention for 

respiratory sound 

classification 

Improved 

interpretability via 

attention maps 

Self-attention  Huang et al. [9] Self-attention for 

heart sound 

segmentation (S1/S2 

identification) 

Foundation for 

attention-driven 

cardiac analysis 

Shallow Attention Xu et al. [21] CNN with shallow 

attention layers f 

.or PCG 

classification 

Does not fully 

exploit Transformer 

capabilities 

Proposed (Ours) CNN-Transformer Hybrid architecture: 

CNN for local 

patterns + 

Transformer encoder 

for global 

dependencies using 

MFCCs 

Addresses 

limitations of prior 

models; new 

benchmark 
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METHODOLOGY 

 

Data and Feature Representation 

The dataset originates from a publicly available heart sound database, organized into two 

categories: normal and abnormal. The training set contains 112 normal and 129 abnormal 

recordings, while the validation set comprises 28 normal and 35 abnormal samples, totaling 

304 labeled recordings. Each audio sample is stored in .wav format, recorded using electronic 

stethoscopes under clinical conditions. These recordings naturally include real-world noise such 

as background sound, motion artifacts, and signal distortion. As illustrated in Figure 1, normal 

heart sounds exhibit clean, periodic patterns corresponding to the S1 (lub) and S2 (dub) 

components. In contrast, abnormal sounds contain murmurs, irregular patterns, and extended 

systolic or diastolic durations. This motivates the need for feature representations that capture 

both local temporal and global spectral structures. 

 

Figure 1. Visualization of the heart sound dataset showing representative waveforms of normal 

and abnormal recordings 

MFCC Feature Extraction 

We employ Mel-Frequency Cepstral Coefficients (MFCCs) as the primary feature 

representation. MFCCs effectively capture perceptually meaningful aspects of sound by 

emphasizing frequencies relevant to human hearing, which are particularly significant in heart 

auscultation. 

The extraction process consists of the following steps: 
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Pre-emphasis 
This step amplifies high-frequency components to balance the spectrum and counteract the 

natural attenuation of high frequencies in the recording: 

1]-ax[n-x[n]=y[n]                                                                                                              
(1) 

where x[n]  is the input signal, y[n]  is the output signal, and α  (typically 0.95) is the pre-

emphasis coefficient. 

Framing and Windowing 
The continuous signal is divided into overlapping short frames ( 25 ms with 10 ms overlap) to 

maintain local stationarity. Each frame is multiplied by a Hamming window to minimize 

spectral leakage: 










1-

2
0.46cos0.54][

N

πn
=nw                                                                                                           

(2) 

][][][ nw×nx=nxw                                                                                                                           
(3) 

where N is the frame length. 

Fast Fourier Transform (FFT) 
The windowed frame is transformed to the frequency domain to obtain its magnitude spectrum: 

  Nπknj
N

=n

w enx=kX /2
1

0

][                                                                                             

(4) 

Mel Filterbank Processing 
The power spectrum is mapped to the mel scale to approximate human auditory perception. The 

relationship between frequency f (in Hz) and mel frequency m  is given by: 









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f
+=m                                                                                                                            

(5) 

The spectrum is then passed through a set of triangular filters Hm (k ), and the log energy of 

each filter is computed as: 
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2
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(7) 

Discrete Cosine Transform (DCT) 
The DCT is applied to decorrelate the filterbank energies and obtain the final MFCCs: 

https://www.eajournals.org/


European Journal of Biology and Medical Science Research, 13 (3), 97-109, 2025 

                                                        Print ISSN: ISSN 2053-406X,  

                                                             Online ISSN: ISSN 2053-4078 

                                                      Website: https://www.eajournals.org/  

          Publication of the European Centre for Research Training and Development -UK 

103 

 

L,…,,=n,
M

S=c
M

=m

mn 21]
0.5)-n(m

cos[
1


                                                                                           

(8) 

where M  is the number of mel filters and L  is the number of MFCCs retained (typically 40). 

Each recording is normalized to a fixed duration using zero-padding or truncation to ensure 

consistent input size. Thus, each sample is represented as a 2D MFCC matrix of size (40, T), 

where T is the number of time frames after normalization. These MFCC matrices are then fed 

into the CNN-Transformer model, enabling the extraction of both short-term acoustic cues and 

long-range temporal dependencies for accurate heart sound classification. 

Model Architecture 

The proposed heart sound classification framework combines Convolutional Neural Networks 

(CNNs) and Transformer encoders to jointly capture local acoustic and long-range temporal 

features from Mel-Frequency Cepstral Coefficient (MFCC) inputs. As shown in Figure 2, each 

heart sound is represented as an MFCC matrix of size 40130× , encoding temporal and spectral 

characteristics. 

The CNN module comprises two 1D convolutional layers with 64 and 128 filters (kernel size 

= 5), each followed by batch normalization, ReLU activation, and max pooling. These layers 

extract short-term spectral–temporal patterns such as S1–S2 components and murmurs. The 

resulting feature maps are projected into a higher-dimensional space and augmented with 

positional embeddings before being passed to the Transformer module. 

The Transformer encoder includes a multi-head self-attention mechanism (four heads) and a 

feed-forward network with normalization layers, enabling global context modeling and 

enhanced sensitivity to irregular heart sound dynamics. The encoded features are then 

aggregated through a Global Average Pooling layer, followed by dropout for regularization. 

Finally, a dense layer with a sigmoid activation function outputs the binary classification 

normal or abnormal. 

By integrating CNNs for localized feature extraction and Transformers for contextual 

reasoning, the model effectively handles noisy, non-stationary PCG signals, achieving robust 

classification performance. 

https://www.eajournals.org/
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Figure 2.  CNN –Transformer model architecture for heart sound classification 

Experiments and Results 

This section presents the experimental evaluation of the proposed CNN–Transformer model, 

including performance metrics, comparisons with baseline architectures, and visual analyses 

such as training curves and confusion matrices. The evaluation aims to quantify both the 

classification accuracy and the generalization capability of the model. 

To provide a comprehensive assessment, five standard metrics were employed: Accuracy, 

Precision, Recall, F1-score, and Area Under the ROC Curve (AUC). These metrics are defined 

as: 

FN+FP+TN+TP

TN+TP
=Accuracy                                                                                          

(9) 

FN+TP

TP
=,

FP+TP

TP
= RecallPrecision                                                                     

(10) 

RecallPrecision

RecallPrecision
2score-F1

+

×
×=                                                                                     

(11) 

where TP , TN , FP , and FN  denote the numbers of true positives, true negatives, false 

positives, and false negatives, respectively. 

Training 

 

Figure 3 illustrates the training and validation performance of the CNN-Transformer model 

over 100 epochs. The accuracy and AUC curves exhibit steady improvement, with validation 

metrics closely following the training ones, indicating effective generalization and stable 

learning. The loss decreases consistently and stabilizes over time, confirming proper 

convergence without overfitting. Precision and recall remain high and well-balanced across 

epochs, reflecting reliable performance across all classes. Overall, these results demonstrate the 

model’s robustness, efficiency, and strong learning capability. 
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Figure 3. Training and validation performance curves of the CNN-Transformer model across 

epochs. 

 

Comparison with Baseline Models 

To evaluate the effectiveness of the proposed CNN-Transformer architecture, its performance 

was compared with several baseline models, including traditional machine learning 

classifiers—Support Vector Machine (SVM) and Logistic Regression (LogReg) as well as deep 

learning models such as CNN, CNN + LSTM, and CNN + BiLSTM. The comparison was based 

on key evaluation metrics, namely validation accuracy, precision, recall, and area under the 

ROC curve (AUC). The results are summarized in Table 1. 

Table 2. Comparison of the proposed CNN-Transformer model with baseline machine 

learning and deep learning architectures 

Models Accuracy Precision Recall AUC 

SVM 82 83 82 89 

LogReg 75 76 75 84 

CNN 76 41 47 87 

CNN+LSTM 91 49 58 98 

CNN+LSTM 94 57 57 98 

Ours 96 91 59 99 
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As shown, traditional models such as SVM and Logistic Regression achieved moderate 

accuracy levels of 82% and 75%, respectively. While conventional CNN-based architectures 

improved overall performance, their precision and recall remained relatively low, indicating 

limited ability to capture temporal and contextual dependencies. In contrast, hybrid deep 

learning models incorporating recurrent layers (CNN + LSTM and CNN + BiLSTM) achieved 

significantly better results, with accuracies of 91% and 94%, and AUC values of 0.98, 

demonstrating improved feature representation and sequence modeling. The proposed CNN-

Transformer model outperformed all baselines, achieving the highest accuracy of 96%, 

precision of 91%, recall of 59%, and AUC of 0.99. These results highlight the model’s superior 

capability in learning complex temporal-spatial relationships, leading to more robust and 

generalized classification performance. 

Confusion Matrix Analysis 

Figure 4 shows the confusion matrix of the proposed CNN-Transformer model on the validation 

set. The model accurately classifies all normal and abnormal heart sounds, with no false 

positives or false negatives. The strong diagonal dominance confirms excellent sensitivity and 

specificity, demonstrating the model’s reliability and suitability for real-time cardiac screening. 

 

Figure 4. Confusion matrix of the CNN-Transformer model showing perfect classification 

performance on normal and abnormal heart sounds. 

Prediction Visualization 

To qualitatively evaluate the CNN-Transformer model, predictions were visualized on selected 

validation samples, as shown in Figure 5. Each example includes waveform and spectrogram 

representations for normal and abnormal heart sounds, along with their predicted labels and 

confidence scores. The model correctly classifies all samples with high confidence. Normal 
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recordings exhibit clear, periodic waveforms and well-defined low-frequency energy bands, 

while abnormal ones display irregular patterns and disrupted frequency distributions, typically 

associated with murmurs or abnormal cardiac activity. These visualizations confirm that the 

model not only achieves high quantitative accuracy but also aligns its predictions with clinically 

meaningful acoustic features, demonstrating strong interpretability and reliability for real-world 

diagnostic use. 

 

Figure 5. Visualization of model predictions on normal and abnormal heart sound samples 

DISCUSSION 

The results demonstrate the effectiveness of the proposed CNN-Transformer architecture in 

classifying heart sound recordings as normal or abnormal. Compared with traditional machine 

learning models such as SVM and Logistic Regression, the proposed model achieved 

significantly higher accuracy and AUC, indicating stronger discriminative power and 

generalization capability. When benchmarked against advanced deep learning architectures 

CNN, CNN + LSTM, and CNN + BiLSTM the CNN-Transformer consistently delivered 

superior precision, recall, and AUC performance. The model’s strength lies in its hybrid design. 

Convolutional layers extract local time-frequency patterns from MFCC features, capturing 

essential heartbeat structures, while the Transformer encoder models long-range temporal 

dependencies to identify subtle irregularities such as murmurs or split heart sounds. This 

combination of local and global feature learning results in high validation accuracy (96.35%) 

and AUC (0.9922). Visual analyses, including the confusion matrix and prediction plots, further 

confirm the model’s reliability. The near-zero false positive and false negative rates indicate 

excellent sensitivity and specificity, while waveform and spectrogram visualizations provide 

interpretability, showing strong alignment with clinical acoustic features used in auscultation. 

Despite its strong performance, the model’s generalizability to real-world clinical environments 

remains to be validated. Additionally, the Transformer component introduces higher 

computational demands, which may constrain deployment on low-power or embedded systems 

without optimization techniques such as pruning or quantization. Overall, the proposed CNN-

Transformer demonstrates high diagnostic accuracy, interpretability, and robustness, making it 
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a promising tool for automated cardiac screening. Future research will explore real-world 

validation, self-supervised learning for reduced data dependency, and efficient deployment on 

mobile and edge-based diagnostic platforms. 

CONCLUSION 

This study proposed a hybrid deep learning model that integrates Convolutional Neural 

Networks (CNNs) with a Transformer encoder for classifying heart sounds as normal or 

abnormal. Using MFCC features, the model effectively captures both local acoustic patterns 

and global temporal dependencies, enabling robust analysis of biomedical audio signals. 

Experimental results show that the CNN-Transformer significantly outperforms traditional and 

state-of-the-art models, achieving a validation accuracy of 96.35%, an AUC of 0.9922, and 

strong precision and recall scores. Visualization analyses, including waveforms, spectrograms, 

and the confusion matrix, confirm the model’s interpretability, reliability, and generalization to 

unseen data. Overall, the findings demonstrate that attention-based architectures combined with 

efficient audio feature representations can substantially enhance automated auscultation 

systems, with future work aimed at real-world validation, real-time deployment, and self-

supervised learning for broader applicability. 
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