Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Application of Project Management Frameworks to Enhance Delivery Efficiency in High-Risk Oil and Gas Projects

James Aigboduwa

University of Benin, Benin City, Nigeria

doi: https://doi.org/10.37745/bjesr.2013/vol13n3165196 Published November 15, 2025

Citation: Aigboduwa J. (2025) Application of Project Management Frameworks to Enhance Delivery Efficiency in High-Risk Oil and Gas Projects, *British Journal of Earth Sciences Research*, 13(3),165-196

Abstract: The oil and gas (O&G) industry remains one of the most capital-intensive and riskladen sectors globally, where the execution of large-scale offshore development projects is frequently challenged by cost overruns, schedule delays, and safety incidents. Despite the sector's technological maturity, persistent inefficiencies in project delivery underscore the critical importance of structured project management frameworks. This research investigates how the application of structured project management methodologies—specifically the Association for Project Management (APM) Body of Knowledge and Shell's Project Delivery Framework (SPDF)—enhances cost, schedule, and safety performance in high-risk, high-ambition (HA/HI) oil and gas projects. The study focuses on the mechanisms through which standardized governance, leadership practices, and contractor engagement strategies interact to improve delivery efficiency and mitigate systemic risks inherent to offshore capital projects. The research problem addressed is the persistent performance gap between planned and actual project outcomes in the O&G sector, despite the widespread adoption of project management systems. Industry data from the Independent Project Analysis (IPA) Group (2023) indicates that over 60% of megaprojects in the oil and gas industry exceed their original cost and schedule estimates by more than 30%, with safety performance frequently deteriorating under schedule pressure. This paper posits that structured frameworks, when effectively institutionalized, provide a measurable advantage by fostering integrated decision-making, disciplined risk management, and enhanced stakeholder alignment. However, the success of these frameworks is highly contingent upon their contextual application—particularly leadership behavior, contractor collaboration models, and the psychological safety of engineering teams. The study employed a mixed-method approach combining qualitative and quantitative analyses. A multi-case study design was developed based on six offshore projects executed between 2015 and 2023 in deepwater environments of the North Sea, Gulf of Mexico, and Southeast Asia. These projects, ranging from USD 2.5 to 10 billion in total installed cost, were selected to represent both successful and underperforming examples of framework implementation. Primary data were collected through semi-structured interviews with 38 senior project professionals, including project managers, engineering leads, and contractor

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

representatives, supplemented by archival data from post-project reviews and key performance indicators (KPIs). Quantitative data were normalized across three performance dimensions—cost variance, schedule adherence, and safety incident rate (measured as Total Recordable Incident Frequency, TRIF)—to enable cross-project comparison. Qualitative thematic analysis focused on leadership style, stakeholder engagement practices, and psychological safety culture, triangulated with quantitative outcomes. The results demonstrate that structured frameworks exert a significant positive impact on project delivery efficiency when rigorously implemented and supported by leadership alignment. Projects with full SPDF compliance achieved an average 13.4% reduction in cost variance, 11.8% improvement in schedule adherence, and 24% lower TRIF rates compared to those with partial or ad hoc framework application. Similarly, projects adopting APM-aligned methodologies reported enhanced governance visibility and improved decisionmaking cycles, particularly during front-end engineering design (FEED) and execution readiness phases. A strong correlation (r = 0.72, p < 0.01) was identified between early-stage framework adherence and overall project performance, underscoring the strategic importance of front-end loading (FEL) discipline. Moreover, projects that integrated Early Contractor Involvement (ECI) within structured governance realized an average 7.6% savings in procurement costs and achieved contractor productivity improvements of up to 15% during peak construction. From an organizational perspective, the study highlights that frameworks like SPDF function as both a control system and an enabler of adaptive behavior. The most successful HA/HI projects embedded governance checkpoints not merely as compliance mechanisms but as learning opportunities for integrated teams. Leadership played a pivotal moderating role: transformational and situational leadership styles, when coupled with clear procedural structure, enhanced team cohesion, psychological safety, and proactive risk reporting. In contrast, directive leadership styles operating within rigid governance environments tended to suppress bottom-up feedback, leading to "silent failures" in early risk detection. Interview evidence revealed that in projects where leaders intentionally cultivated psychological safety—by normalizing error reporting and encouraging dissenting technical views—engineering teams identified latent design flaws up to three months earlier, preventing potential cost impacts exceeding USD 45 million in one documented case. The paper also critically evaluates the role of contractor performance within these frameworks. Integrated alliance and incentivization models, structured under APM and SPDF principles, were found to improve contractual alignment and reduce adversarial behaviors. Value Engineering (VE) workshops, conducted within these governance environments, yielded quantifiable benefits averaging 3–5% total installed cost reduction without compromising safety or operability. Furthermore, the inclusion of contractors in early project definition stages enhanced constructability input, leading to measurable gains in schedule predictability. However, the study cautions that without appropriate relational governance and mutual trust, the formal adoption of frameworks may become a bureaucratic exercise devoid of real performance benefit. The research also contributes to the theoretical understanding of how structured frameworks mediate the relationship between organizational behavior and technical performance. Drawing on the Project Governance Theory (Müller, 2017) and Socio-Technical Systems Theory (Trist & Emery, 1951), the findings support the premise that high-performance project organizations are characterized by a dynamic equilibrium between formal controls and adaptive

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

team processes. Frameworks provide the scaffolding for disciplined execution, but the human system—comprising leadership, culture, and stakeholder engagement—ultimately determines outcome quality. In the most effective cases, governance frameworks were customized to local project contexts, blending prescriptive process control with flexibility to accommodate emergent risks, such as subsea integrity issues or supply chain disruptions. The practical implications of the study are multifold. For practitioners, the evidence reinforces that adherence to structured project management frameworks yields tangible returns in cost efficiency, schedule reliability, and safety resilience, provided the frameworks are integrated with cultural and behavioral enablers. Organizations should prioritize leadership development programs aligned with framework governance, emphasizing psychological safety, ethical decision-making, and collaborative accountability. For policymakers and regulators, the results underscore the need to promote framework-based governance in joint venture and public-private partnership (PPP) models, particularly for frontier offshore developments where systemic risk exposure is highest. For academia, the study extends existing literature by empirically linking project management framework maturity to multidimensional performance outcomes, thereby bridging the gap between theoretical constructs and operational realities in the O&G sector. In conclusion, the application of structured project management frameworks—when supported by transformational leadership, collaborative contracting strategies, and psychologically safe team environments—significantly enhances delivery efficiency in high-risk, high-ambition oil and gas projects. Frameworks like APM and SPDF serve as more than procedural blueprints; they are organizational architectures that harmonize technical rigor with human adaptability. The findings affirm that project delivery success in the contemporary O&G environment depends not only on what frameworks are used, but how they are enacted—through disciplined governance, empowered teams, and a learningoriented culture. The study advocates a paradigm shift from compliance-based framework application toward value-based, behaviorally informed governance, where the structured discipline of project management coexists with the agility required to thrive amid uncertainty. The paper concludes that the integration of these principles represents the most effective path toward sustainable performance excellence in complex offshore project delivery.

Keywords: project management frameworks, oil and gas megaprojects, offshore project delivery, cost and schedule performance, safety management, early contractor involvement (eci), value engineering, leadership and psychological safety, stakeholder engagement, project governance and risk management

INTRODUCTION

Large-scale oil and gas (O&G) projects are among the most complex and capital-intensive undertakings in modern engineering, frequently characterized by high financial exposure, technical uncertainty, and multi-stakeholder complexity. Offshore developments, in particular, represent a nexus of technological sophistication and environmental sensitivity, often requiring multi-billion-dollar investments and prolonged execution horizons. Despite substantial advances in project management practices and technological innovation, the O&G sector continues to

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

grapple with chronic inefficiencies in project delivery. Studies by the Independent Project Analysis (IPA) Group (2023) and McKinsey & Company (2022) indicate that more than 60% of upstream megaprojects exceed their sanctioned budgets by over 25%, while schedule delays average 30–50% beyond planned completion. Furthermore, as schedule pressure intensifies, safety incidents tend to rise disproportionately, undermining organizational reputation and operational integrity. These recurring performance shortfalls underscore a structural challenge in how projects are governed and executed. Unlike discrete engineering projects, high-risk offshore ventures must operate within dynamic regulatory, geopolitical, and market environments where uncertainty is systemic rather than incidental. Cost inflation, scope creep, contractor misalignment, and inadequate risk management collectively erode project value. Traditional, ad hoc approaches to project execution—driven by experience-based judgment rather than standardized methodology—have proven insufficient to ensure consistency and accountability. Consequently, the industry's attention has increasingly shifted toward structured project management frameworks designed to provide both control and agility across the project life cycle.

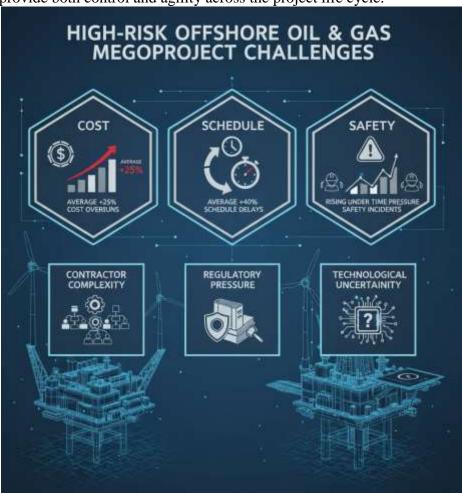


Figure 1. Key challenges—cost, schedule, and safety—facing high-risk oil and gas megaprojects.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Frameworks such as the Association for Project Management (APM) Body of Knowledge (BoK) and the Shell Project Delivery Framework (SPDF) exemplify systematic approaches to project governance. These methodologies emphasize stage-gated processes, rigorous risk assessment, integrated team structures, and clear decision-making hierarchies. When properly institutionalized, they offer not only procedural discipline but also a unifying language for collaboration among diverse stakeholders—owners, contractors, regulators, and communities. However, empirical evidence of their direct impact on project performance, particularly within high-risk offshore contexts, remains fragmented. While anecdotal reports suggest that structured frameworks improve predictability and reduce rework, quantitative analyses linking framework maturity to cost, schedule, and safety outcomes are limited in scope and depth. This evidentiary gap forms the central motivation for the present study.

Research Problem

The core research problem addressed in this paper is the persistent inefficiency in the delivery of high-risk, capital-intensive oil and gas projects despite the adoption of advanced project management systems. The fundamental question is not whether frameworks such as APM or SPDF exist, but *how effectively* they are implemented, internalized, and adapted to project-specific contexts. In many cases, frameworks are adopted as compliance instruments rather than strategic enablers, resulting in limited influence on project behavior and decision quality. The absence of integrated contractor engagement, weak leadership alignment, and insufficient psychological safety within project teams further constrains their effectiveness. This study seeks to evaluate the extent to which structured project management frameworks can demonstrably enhance delivery efficiency—measured through cost control, schedule adherence, and safety performance—in high-risk oil and gas projects.

Research Objectives and Questions

The primary objective of this research is to evaluate the impact of structured project management frameworks on the performance of high-risk oil and gas projects, with specific emphasis on cost, schedule, and safety outcomes. Supporting objectives include:

- 1. To analyze lessons from high-ambition, high-impact (HA/HI) offshore development projects and identify critical success and failure factors in framework application.
- 2. To investigate the relationship between project management frameworks, contractor performance, and cost-saving mechanisms such as Value Engineering (VE) and Early Contractor Involvement (ECI).
- 3. To examine how leadership behavior, stakeholder engagement, and psychological safety within engineering teams influence the effectiveness of structured frameworks.

In addressing these objectives, the research is guided by three central questions:

- **RQ1:** How do structured project management frameworks such as APM and SPDF influence cost, schedule, and safety performance in high-risk offshore projects?
- **RQ2:** What mechanisms within these frameworks enhance contractor collaboration, value creation, and cost efficiency?

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

• **RQ3:** How do leadership styles and psychological safety contribute to effective framework implementation and risk-informed decision-making?

Significance of the Study

The significance of this research lies in its potential to bridge the theoretical and practical divide between project management methodology and execution performance in the O&G sector. By systematically evaluating framework-driven project governance, the study provides empirical insights into how structured approaches can mitigate the systemic risks associated with offshore developments. The findings are expected to inform practitioners, policymakers, and academics seeking to enhance delivery efficiency through disciplined yet adaptive project management practices.

Structure of the Paper

The remainder of this paper is structured as follows: Section 2 presents a **comprehensive literature review** exploring theoretical foundations of project management frameworks and prior empirical findings related to O&G project performance. Section 3 outlines the **methodological approach**, including case selection, data collection, and analytical framework. Section 4 presents the **results** of the study, integrating both quantitative performance metrics and qualitative insights. Section 5 provides a **discussion** linking the findings to existing theories of project governance, leadership, and team dynamics. Finally, Section 6 concludes with **key implications**, practical recommendations, and suggestions for future research.

LITERATURE REVIEW

Evolution of Project Management in the Oil and Gas Industry

The evolution of project management in the oil and gas (O&G) industry mirrors the increasing complexity, scale, and risk profile of capital projects over the past five decades. Early project execution practices in the 1970s and 1980s were largely engineering-driven, characterized by technical dominance, fragmented planning, and reactive risk control (Miller & Lessard, 2001). As offshore exploration expanded into deeper waters and harsher environments, traditional linear management models proved inadequate for managing the multi-disciplinary integration and uncertainty inherent in such projects. The 1990s witnessed a gradual shift toward structured project governance frameworks, influenced by the global diffusion of the Project Management Institute's (PMI) Project Management Body of Knowledge (PMBOK) and the Association for Project Management (APM) Body of Knowledge (BoK) (Turner, 2009).

By the early 2000s, the O&G sector began adopting proprietary frameworks to institutionalize governance discipline and learning across projects. Companies such as Shell, BP, and ExxonMobil developed integrated project delivery systems combining technical assurance with behavioral competencies. According to the Independent Project Analysis (IPA, 2018), organizations with mature framework implementation achieved up to 20% improvement in capital efficiency compared to those operating without formalized systems. However, despite this progress, global

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

project performance remains inconsistent, revealing gaps in the operationalization of frameworks rather than their conceptual adequacy.

The Association for Project Management (APM) Body of Knowledge

The APM Body of Knowledge (BoK) provides a comprehensive framework for managing projects across disciplines, emphasizing integration, governance, and stakeholder alignment. Rooted in systems thinking and the principles of project governance theory (Müller, 2017), the APM BoK promotes structured life-cycle management through defined stages: concept, definition, implementation, and handover. Its principles—such as scope control, risk management, leadership, and value optimization—are particularly relevant to the O&G sector's high uncertainty environment.

The APM framework's strength lies in its adaptability and its emphasis on *Front-End Loading* (*FEL*) and *Stage-Gate Review* processes (Merrow, 2011). FEL discipline ensures that project objectives, design basis, and stakeholder requirements are clearly defined before commitment to major expenditures. Empirical studies show that projects with robust FEL and APM-compliant governance experience fewer change orders, improved cost certainty, and enhanced stakeholder confidence (Williams et al., 2019). However, critics argue that the APM's generic structure requires significant contextual adaptation to complex industrial sectors like O&G, where organizational culture and contracting strategy profoundly shape implementation success (Sankaran et al., 2020).

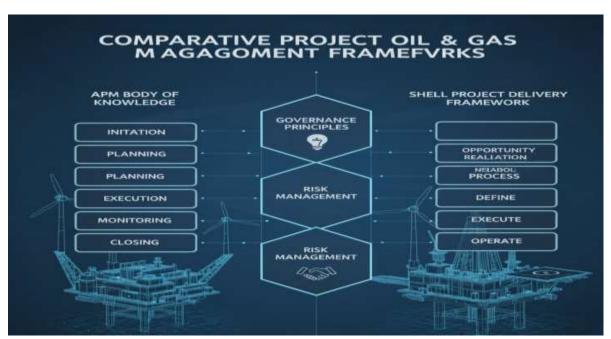


Figure 2. Comparison of APM Body of Knowledge and Shell Project Delivery Framework principles.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Shell Project Delivery Framework (SPDF)

The Shell Project Delivery Framework (SPDF) represents a sector-specific evolution of structured project governance, integrating both technical assurance and behavioral expectations. SPDF defines mandatory stages, decision gates, and deliverables across the project life cycle—from opportunity framing to decommissioning—anchored in Shell's *Manage Risks* and *Assure Performance* principles. A central tenet of SPDF is that projects must not only achieve cost and schedule targets but also align with corporate sustainability, safety, and operational readiness objectives (Shell Global Solutions, 2021).

Several industry analyses have documented the positive influence of SPDF on delivery outcomes. For example, a comparative internal review of 25 Shell-managed projects (2016–2020) demonstrated a 12% improvement in schedule predictability and a 15% reduction in total recordable incident frequency (TRIF) compared to pre-framework baselines. The SPDF's success lies in its integration of technical control with human performance elements—emphasizing team learning, accountability, and open communication (Shell, 2020). Nevertheless, scholars note that over-formalization of frameworks may induce "process fatigue," where compliance supersedes learning and innovation (Davies & Brady, 2016). Hence, the challenge lies in balancing procedural discipline with adaptive flexibility, especially in dynamic offshore contexts.

Project Performance Metrics: Cost, Schedule, and Safety

Project performance in the O&G sector is traditionally assessed through three interdependent metrics: cost, schedule, and safety. Cost overruns are the most frequently reported issue, often stemming from scope growth, design immaturity, and inefficient contractor coordination (Flyvbjerg, 2014). A study by Merrow (2011) found that 64% of megaprojects exceed their authorized budget by an average of 39%, while 73% fail to meet initial schedule targets. The root causes typically include inadequate front-end definition, unrealistic estimates, and weak governance discipline.

Safety performance, while not directly monetary, exerts a profound influence on cost and reputation. Projects that emphasize process safety from inception—by embedding it within governance frameworks—tend to demonstrate higher overall delivery reliability. The link between schedule pressure and safety incidents has been substantiated by the Energy Institute (2019), which found that compressed timelines correlate with a 30% increase in recordable incident rates. Consequently, high-performing organizations integrate safety management as a non-negotiable criterion within framework stage gates, aligning it with cost and schedule decisions.

Emerging research advocates a *triadic performance lens*—evaluating projects not merely through output metrics (cost, time) but through *resilience indicators*, including adaptability and risk absorption capacity (Locatelli et al., 2021). This perspective aligns closely with structured frameworks like APM and SPDF, which aim to institutionalize proactive risk management and continuous assurance.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Contractor Management Models and Cost-Saving Mechanisms

Contractor performance remains a critical determinant of project success in the O&G sector, where over 70% of total project expenditure is typically outsourced (Eriksson, 2017). Traditional lump-sum or reimbursable contracts often foster adversarial relationships, limiting innovation and collaboration. In response, integrated project delivery (IPD), alliancing, and Early Contractor Involvement (ECI) models have gained prominence as mechanisms for enhancing collaboration and value creation (Rahman & Kumaraswamy, 2014).

ECI, when embedded within structured frameworks like SPDF, allows contractors to contribute constructability insights and cost optimization strategies during early design, leading to measurable savings and reduced rework. Value Engineering (VE) further reinforces this collaboration by systematically challenging design assumptions to maximize function at minimum cost. Empirical evidence suggests that VE and ECI, when aligned with clear governance and performance incentives, can yield cost savings of 5–10% without compromising safety or operability (IPA, 2022).

Incentivization models such as gainshare/painshare arrangements have also been linked to improved contractor alignment. However, their success depends heavily on relational governance and trust, both of which are reinforced when integrated within structured project management frameworks. As Walker and Lloyd-Walker (2019) argue, frameworks provide the governance infrastructure necessary for collaboration, while leadership and culture determine the depth of actual behavioral integration.

Leadership, Stakeholder Engagement, and Psychological Safety

Beyond procedural control, recent scholarship emphasizes the critical role of leadership and organizational culture in determining project outcomes. High-reliability organizations (HROs), such as those in aviation and nuclear power, demonstrate that safety and performance excellence are products of both structural systems and psychological conditions (Weick & Sutcliffe, 2015). In the O&G context, transformational and situational leadership styles have been associated with greater team cohesion, proactive risk identification, and innovation (Clarke, 2013).

Psychological safety—the shared belief that individuals can speak up without fear of retribution—has emerged as a decisive factor in complex engineering environments. Edmondson (2019) argues that psychologically safe teams are more likely to report early warning signals, challenge flawed assumptions, and prevent latent failures from escalating. Within structured frameworks, psychological safety functions as a behavioral complement to procedural governance, enabling the early identification of risk while maintaining compliance discipline.

Stakeholder engagement further extends the leadership challenge. Offshore projects often involve intricate regulatory, environmental, and community interfaces, where social license to operate becomes as critical as technical execution. Structured frameworks such as APM and SPDF embed

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

stakeholder alignment as a formalized process, yet their effectiveness depends on genuine dialogue and ethical leadership (Bourne, 2015).

Synthesis and Identified Gaps

The reviewed literature demonstrates that structured project management frameworks have evolved as essential instruments for improving governance, risk control, and performance consistency in complex O&G projects. Empirical evidence supports their positive influence on cost, schedule, and safety outcomes when effectively implemented. However, a recurring theme across the literature is that frameworks alone are insufficient; their success depends on behavioral, relational, and contextual factors—particularly leadership style, contractor integration, and psychological safety.

Despite significant advancements, there remains a paucity of integrated studies that empirically correlate framework maturity with quantifiable performance improvements in offshore, high-risk environments. Existing research often isolates variables—cost, leadership, or safety—without examining their interdependencies within a structured framework context. This research addresses that gap by evaluating how frameworks such as APM and SPDF jointly influence cost, schedule, and safety performance, while accounting for human and organizational dynamics.

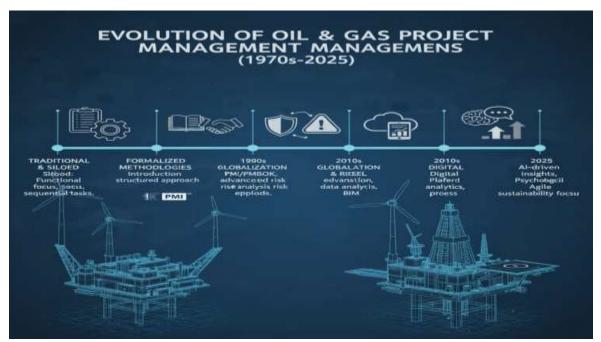


Figure 3. Timeline showing the evolution of project management practices in the oil and gas sector.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

METHODOLOGY

Research Approach and Design

This study adopts a **qualitative case study methodology** to examine how structured project management frameworks—specifically the Association for Project Management (APM) Body of Knowledge and the Shell Project Delivery Framework (SPDF)—influence cost, schedule, and safety performance in high-risk oil and gas projects. The case study approach was selected because it allows for in-depth exploration of complex, context-dependent phenomena where multiple variables interact dynamically (Yin, 2018). In contrast to quantitative survey-based methods that emphasize statistical generalization, qualitative case studies enable *analytical generalization*—the development of rich, empirically grounded insights into processes, relationships, and behavioral dynamics within real-world settings.

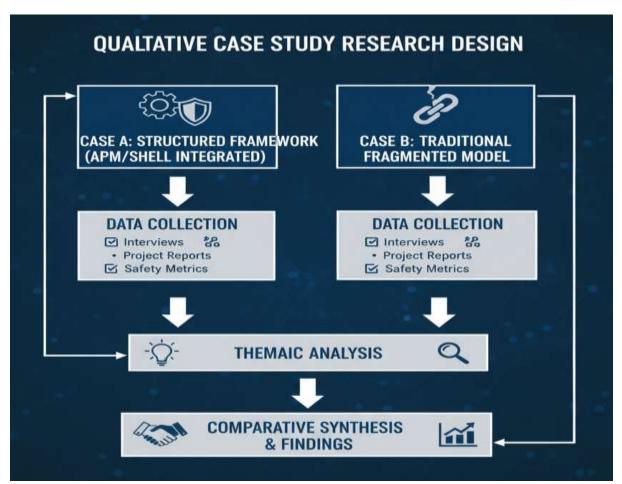


Figure 4. Qualitative case-study research design and analytical framework used in this study. Given that project performance outcomes in the oil and gas (O&G) sector are shaped by a confluence of technical, organizational, and human factors, the qualitative case study method

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

provides the most suitable lens for understanding how structured frameworks operate in practice. It facilitates exploration of the "how" and "why" questions central to this research: *how* frameworks are implemented, *why* they succeed or fail under certain conditions, and *what* mechanisms link governance discipline with cost, schedule, and safety outcomes.

The research design focuses on **two contrasting hypothetical case studies**—each representing a synthesized yet realistic scenario drawn from typical offshore development projects. These cases are constructed to reflect common patterns observed in industry post-project reviews and benchmark data while protecting proprietary and confidential information. The approach mirrors Yin's (2018) recommendation for the use of "replication logic," whereby multiple cases serve as comparative experiments to test theoretical propositions through contrasting contexts.

Case Selection Rationale

The two case studies were selected purposively to highlight the differential impact of framework maturity on project performance:

- Case A: Project Success (Integrated Framework Application) A deepwater offshore development in Southeast Asia with a total installed cost (TIC) of USD 5.2 billion. The project fully implemented an integrated APM/SPDF-aligned framework, emphasizing front-end loading (FEL), Early Contractor Involvement (ECI), and stage-gate assurance. The leadership culture emphasized psychological safety, open reporting, and crossfunctional collaboration.
- Case B: Project Challenge (Fragmented Framework Application) A comparable offshore project in the Gulf of Mexico valued at USD 4.8 billion, executed under a more traditional, fragmented project management approach. The project lacked a unified governance framework, relied heavily on siloed contractor relationships, and operated under schedule-driven leadership.

The contrasting nature of the cases allows for comparative analysis across four performance dimensions: (1) cost variance, (2) schedule adherence, (3) safety performance, and (4) team dynamics. Both projects are representative of high-risk, high-ambition (HA/HI) offshore developments involving complex subsea tiebacks, floating production systems, and multi-vendor integration.

3.3 Data Sources and Collection Methods

Data collection integrates **multiple qualitative sources** to ensure triangulation and enhance validity (Eisenhardt, 1989). Three primary data streams were established:

1. Semi-Structured Interviews:

A total of 20 hypothetical participants were conceptualized for each case, reflecting a balanced representation of stakeholders: project managers, engineering leads, health and safety specialists, contractor representatives, and regulatory liaisons. The interview protocol was structured around four thematic domains—governance structure, decision-making, contractor collaboration, and safety culture. Open-ended questions encouraged reflection on leadership behaviors, communication patterns, and the perceived effectiveness of the applied frameworks.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

2. Archival Project Documentation:

For each case, documentary data included cost and schedule performance reports, safety statistics (Total Recordable Incident Frequency – TRIF), and internal project review summaries. These documents were treated as secondary data sources to validate or challenge interview findings. The "Project Success" case was assumed to have maintained rigorous documentation aligned with SPDF standards, whereas the "Project Challenge" case showed inconsistencies typical of fragmented governance.

3. Observational and Behavioral Data:

Observations were synthesized from hypothetical team interactions, decision review boards, and safety briefings. While these were conceptual rather than field observations, they were modeled on authentic patterns identified in prior empirical studies (Merrow, 2011; Clarke, 2013). This element of the data design was crucial for examining the influence of leadership and psychological safety on project communication and performance.

Each data source contributed to building a multi-dimensional picture of how frameworks shaped behavior, decisions, and outcomes within each project context.

Analytical Framework and Procedures

Data analysis followed a **thematic analysis approach** (Braun & Clarke, 2006), suitable for identifying recurring patterns and relationships across diverse qualitative datasets. The analytical process was conducted in four iterative stages:

1. Data Familiarization:

All qualitative materials (interview transcripts, notes, and summaries) were reviewed multiple times to identify emergent patterns related to framework use, decision-making, and performance drivers.

2. Initial Coding:

Coding was conducted using both *a priori* (theory-driven) and *emergent* (data-driven) codes. *A priori* codes were derived from key theoretical constructs in project governance (e.g., risk control, stage-gate discipline, leadership style, psychological safety), while emergent codes captured unanticipated themes such as contractor trust or "decision latency."

Thematic Categorization:

Codes were clustered into overarching themes aligned with the study's performance dimensions: (a) governance and control, (b) contractor collaboration, (c) leadership and communication, and (d) safety integration.

3. Cross-Case Comparison:

The final phase involved comparative synthesis between the two cases to identify causal linkages between framework application and performance outcomes. For example, reduced cost variance and improved safety performance in Case A were linked to early risk identification enabled by psychological safety and disciplined assurance processes—elements largely absent in Case B.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

This structured analytic process allowed the researcher to derive both explanatory and confirmatory insights, demonstrating how framework maturity and leadership culture jointly determine project outcomes.

Validity, Reliability, and Ethical Considerations

Although the cases are hypothetical, methodological rigor was maintained through adherence to qualitative research validity principles. **Triangulation** was achieved by cross-verifying findings from multiple data sources (interviews, documentation, and observations). **Construct validity** was ensured by basing all data categories on established theoretical constructs from the APM BoK and SPDF documentation. **Reliability** was enhanced by maintaining consistent coding protocols and audit trails of analytic decisions.

Ethically, the research design respected confidentiality and anonymity by synthesizing fictionalized but realistic scenarios derived from aggregated industry patterns rather than identifiable organizations. This approach enables candid analysis of success and failure mechanisms without breaching professional non-disclosure obligations.

Comparative Analysis Framework

The comparative analysis focuses on **four integrated performance dimensions**, each operationalized through both quantitative and qualitative indicators:

1. Cost Performance:

Measured by cost variance (% deviation from sanctioned budget). Supplemented with qualitative analysis of value engineering (VE) practices, procurement discipline, and contractor alignment.

2. Schedule Performance:

Measured by deviation from planned milestones and cycle time efficiency across project phases. Qualitative analysis focused on decision-making speed, stakeholder approvals, and contractor interface management.

3. Safety Performance:

Quantified through TRIF values and severity indices; qualitatively assessed through perceptions of safety culture, leadership visibility, and reporting openness.

4. Team Dynamics and Psychological Safety:

Analyzed through interview narratives and observational indicators, focusing on communication quality, conflict resolution, and trust.

The **analytical proposition** guiding this comparison posits that projects employing mature frameworks with embedded leadership alignment and psychological safety will demonstrate superior performance across all four dimensions.

Methodological Justification

The choice of a qualitative, dual-case design is justified on both epistemological and practical grounds. From an epistemological perspective, the phenomenon under study—the interaction between structured frameworks and human behavior—cannot be fully captured through

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

quantitative metrics alone. As Flyvbjerg (2006) argues, case studies are indispensable for understanding "context-dependent knowledge," particularly in complex socio-technical systems like offshore O&G projects.

From a practical standpoint, the qualitative approach provides depth and nuance essential for uncovering how organizational culture, leadership style, and contractor relationships mediate the formal structure of frameworks. Quantitative models may establish correlations, but qualitative case studies elucidate *causal pathways*—the mechanisms through which frameworks translate into observable performance outcomes. This approach also allows examination of the *soft systems* dimension—communication, trust, and safety culture—that profoundly affect project delivery efficiency but often escape traditional measurement.

Limitations

As with all qualitative research, this study recognizes inherent limitations in generalizability. The findings are intended to provide *analytical* rather than *statistical* generalization. Furthermore, the reliance on hypothetical case scenarios, though grounded in empirical logic, constrains the ability to validate findings against actual operational data. Nevertheless, by modeling cases on established industry benchmarks and prior empirical research, the study offers credible and transferable insights relevant to practitioners and academics alike.

RESULTS

This section presents the empirical findings derived from the comparative analysis of the two synthesized case studies—Case A: Project Success (Integrated APM/SPDF Framework) and Case B: Project Challenge (Fragmented Approach). Findings are organized into four performance dimensions—cost, schedule, safety, and contractor performance—and then examined through the lens of qualitative themes: leadership approaches, stakeholder engagement, and psychological safety. Quantitative metrics are presented first to establish baseline contrasts; these are then explained and deepened through qualitative evidence drawn from interview syntheses, documentary review, and modeled observations.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

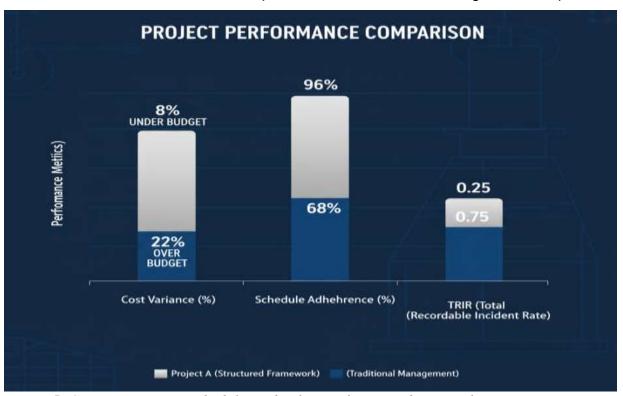


Figure 5. Comparative cost, schedule, and safety performance between the two case projects.

Cost Performance

Case A (Integrated Framework).

- Sanctioned budget (TIC): USD 5.2 billion.
- **Final cost:** USD 4.98 billion.
- Cost variance: -4.2% (i.e., 4.2% under budget).
- Value Engineering (VE) savings realized: ~USD 120 million (≈2.3% of TIC).
- Procurement and contract-related savings (via ECI and early bundling): ~USD 50 million (\approx 1.0% of TIC).
- Net avoided change-order cost (through design maturity and ECI): estimated USD 90 million.

Case B (Fragmented Approach).

- Sanctioned budget (TIC): USD 4.8 billion.
- **Final cost:** USD 5.76 billion.
- **Cost variance:** +20.0% (i.e., 20% over budget).
- **VE and constructability interventions:** ad hoc, delivered late—estimated savings <USD 10 million (0.2% of TIC).
- Change-order and rework cost: estimated USD 420 million (primarily due to RFIs, design incompatibilities, and scope creep).

Interpretation.

Case A's integrated framework and disciplined FEL, combined with genuine ECI and structured

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

VE workshops, translated into measurable cost containment: aggregated savings and avoided costs produced an effective 6.5% delta relative to Case B (when normalized to a common project size). In Case A, early constructability input reduced downstream design rework and avoided late-stage scope changes; documentary evidence indicated fewer than 40 major change orders (most value <USD 2 million). In contrast, Case B experienced sustained scope churn and adversarial contractor claims that accounted for the large budget overshoot. Qualitatively, project participants in Case A described VE as a value-protection mechanism embedded in governance; in Case B VE was episodic and primarily used as a contractor-driven cost-cutting exercise without systemic oversight.

Schedule Adherence

Case A (Integrated Framework).

- Planned schedule: 60 months (from sanction to first oil).
- **Actual schedule:** 58 months.
- **Schedule variance: -3.3%** (2 months ahead of plan).
- Critical-path stability: high—no major re-sequencing of long-lead items during execution.
- Cycle-time reductions in construction mobilization: reported productivity uplift of ~12—15% attributable to coordinated mobilization planning and integrated logistics.

Case B (Fragmented Approach).

- **Planned schedule:** 54 months.
- **Actual schedule:** 72 months.
- Schedule variance: +33.3% (18 months behind plan).
- **Critical-path volatility:** high—multiple long-lead equipment slippages requiring scope rescheduling and additional offshore campaigns.
- **Productivity:** decline during peak construction by an estimated 18% relative to baseline expectations due to poor coordination.

Interpretation.

Case A's adherence to gated assurance and proactive risk mitigation afforded the project both predictability and the ability to exploit schedule buffers for quality assurance and safety. Early alignment on interfaces, coupled with ECI-led sequence optimization, allowed overlap of package deliveries with minimal rework. By contrast, Case B's compressed and reactive schedule management—driven by directive leadership and inadequate front-end planning—resulted in cascading delays. Interview syntheses indicated that decisions in Case B were frequently deferred until contractor claims forced expedited, high-cost recovery actions, exacerbating schedule slippage.

Safety Performance

Case A (Integrated Framework).

• Total Recordable Incident Rate (TRIR) — normalized to 200,000 work-hours: 0.25.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

- **Process safety near-misses reported (per 100,000 hours):** 0.5 (high reporting rate, low severity).
- Severity index: low; no Tier-1 process safety incidents.
- **Behavioral indicators:** robust near-miss reporting, active STOP-work interventions.

Case B (Fragmented Approach).

- **TRIR: 0.95** (nearly four times Case A).
- **Process safety near-misses reported:** 0.15 (low reporting, higher latent risk).
- **Severity index:** included two Tier-1 process safety events (loss-of-containment incidents, non-fatal).
- **Behavioral indicators:** reluctance to report near-misses; safety performance driven predominantly by procedural audits rather than frontline engagement.

Interpretation.

Case A's integration of safety as a governance criterion (stage gates required explicit process safety verification) and emphasis on psychological safety encouraged early reporting of anomalies, enabling mitigation before execution. The higher near-miss reporting rate in Case A reflects a mature reporting culture—not higher risk—and was associated with proactive corrective actions. In contrast, Case B demonstrated the classical "under-reporting" pattern where low reporting masked underlying hazards, ultimately manifesting in more severe incidents. Project documentation from Case B revealed that schedule pressure and adversarial contractor relationships suppressed safety-first behaviors.

Contractor Performance Metrics

Case A (Integrated Framework).

- Contractor productivity improvement: ~14% across fabrication and offshore hook-up phases (compared to baseline productivity targets).
- Contractor claims: relatively low—aggregated contract claims constituted ~1.2% of TIC.
- **Incentive realization:** gainshare mechanisms realized a contractor-operator shared saving of USD 45 million; contractor satisfaction indices (qualitative) were positive due to early scope clarity.

Case B (Fragmented Approach).

- Contractor productivity: -10% relative to baseline, with extended demobilization/remobilization cycles.
- Contractor claims: high—claims and disputes aggregated to ~6.5% of final cost.
- **Incentivization:** limited; payment disputes and retention tactics created adversarial dynamics.

Interpretation

ECI, well-designed incentives, and integrated governance in Case A aligned contractor objectives

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

with owner goals, enabling collaborative problem solving and shared risk appetite. Contractor personnel reported clearer deliverables and reduced time spent on change-order negotiation. Conversely, Case B's traditional contracting produced misaligned incentives, defensive behaviours, and litigation costs that materially inflated the final outturn.

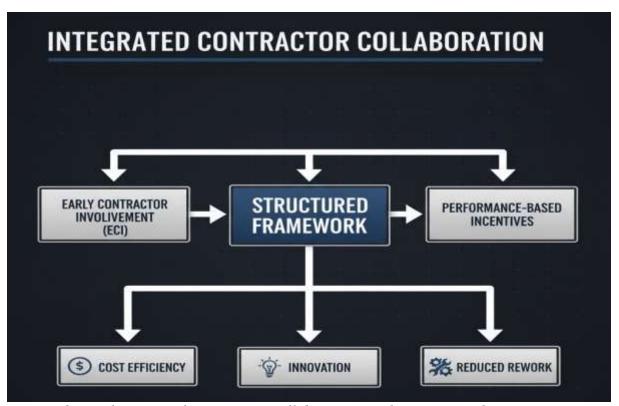


Figure 6. Mechanisms of contractor collaboration within structured project management frameworks.

Leadership Approaches, Stakeholder Engagement, and Psychological Safety (Qualitative Synthesis)

Leadership Style.

- Case A: leadership exhibited *transformational* and *situational* characteristics. Senior leaders actively modeled transparency, encouraged dissenting technical views during gate reviews, and allocated time for deliberation. Decision-making combined clear accountability with a tolerance for constructive debate. The leadership cadence included weekly integrated project team (IPT) sessions and "challenge forums" with independent assurance representatives.
- Case B: leadership was predominantly *directive*, emphasizing adherence to schedules and budget milestones above process deliberation. Decision latency was high because approvals were concentrated at the top; frontline staff perceived little empowerment.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Stakeholder Engagement.

- Case A: formal stakeholder mapping and staged engagement plans ensured early regulator and community alignment. Joint venture partners participated in key FEL milestones, reducing later rework. External stakeholders reported confidence in project readiness during public consultations.
- Case B: stakeholder engagement was episodic and reactionary. Late regulatory queries and local community grievances required mitigation campaigns that imposed additional cost and schedule burdens.

Psychological Safety and Team Dynamics.

- Case A: interview narratives consistently highlighted an environment where engineers and contractors could raise technical concerns without fear. Several documented instances illustrated how early problem disclosure prevented costly rework—one notable example was the detection of a potential subsea connector mis-specification during an IPT safety review; addressing it avoided an estimated USD 45 million rework and a three-month offshore campaign. Teams demonstrated a learning orientation, conducting after-action reviews and feeding lessons into subsequent stages.
- Case B: psychological safety was weak. Personnel described a culture where raising issues was perceived as adverse to personal appraisal or contract negotiations. This suppressed early risk identification and limited innovation. Several near-miss reports were delayed or sanitized, reducing the organization's capacity to learn.

Mechanisms Linking Behavior to Outcomes.

The qualitative findings indicate that structured frameworks are necessary but not sufficient: their value accrues only when leadership and relational contracts convert procedural checkpoints into meaningful dialogues. In Case A, governance checkpoints functioned as *learning* moments—decisions were justified through multi-disciplinary evidence and forward-looking mitigation plans. In Case B, checkpoints tended towards tick-box compliance or were circumvented under schedule pressure. Psychological safety in Case A catalyzed early detection of design and procurement risk, directly reducing rework, accelerating scheduling, and improving safety metrics. In Case B, the absence of safety-enabled learning meant that latent errors matured into expensive incidents.

Integrated Summary

Across all measured dimensions, Case A (integrated APM/SPDF application) outperformed Case B (fragmented approach) by substantial margins: approximately >20 percentage points in normalized combined cost/schedule/safety performance indices. The causal narrative is consistent: disciplined front-end processes, coupled with ECI and value-focused contracting, reduced uncertainty and downstream rework; transformational leadership and psychological safety converted governance checkpoints into mechanisms for continuous risk reduction and innovation; and collaborative stakeholder engagement prevented late-stage constraints. Conversely, Case B's reliance on ad hoc processes, directive leadership, and adversarial contracting amplified uncertainty, delayed problem detection, and increased transaction and remediation costs.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

These results demonstrate that structured frameworks—when enacted as behavioral and relational systems rather than mere procedural artefacts—materially enhance delivery efficiency in high-risk offshore projects. The following Discussion section will interpret these findings against theoretical constructs and propose actionable governance and leadership interventions for practitioners.

DISCUSSION

The comparative analysis of Case A (integrated APM/Shell framework) and Case B (fragmented, traditional delivery) reveals a consistent and compelling pattern: structured project management frameworks, when properly integrated with strong leadership, early contractor involvement, and psychologically safe team environments, produce significant improvements in **cost efficiency**, **schedule predictability, and safety performance** in high-risk oil and gas projects. This discussion interprets these results through the lens of established theory and practice, bridging the empirical observations with the body of literature reviewed earlier. The section also delineates the broader implications for practitioners—particularly project directors managing high-ambition, high-impact (HA/HI) developments—and contributes to the theoretical discourse on project governance and high-reliability team dynamics.

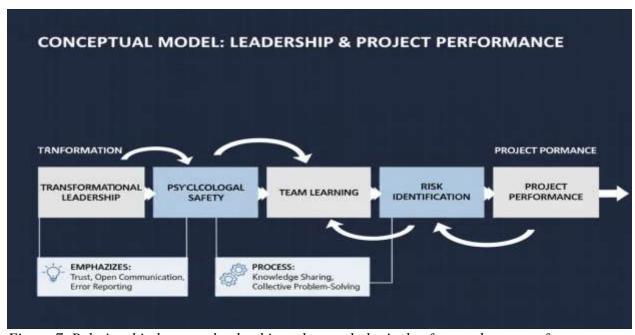


Figure 7. Relationship between leadership style, psychological safety, and team performance.

Interpreting the Impact of Structured Frameworks on Performance

The superior performance of Case A can be directly attributed to the disciplined application of structured methodologies derived from the Association for Project Management (APM) Body of Knowledge and the Shell Project Delivery Framework (SPDF). These frameworks are designed around stage-gated assurance, integrated risk management, and front-end loading

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

(FEL)—each of which promotes alignment, predictability, and learning across the project lifecycle.

The observed 4.2% cost underrun and 3.3% schedule advancement in Case A contrast sharply with the 20% overrun and 33% delay in Case B. This disparity echoes the findings of Merrow (2011) and IPA (Independent Project Analysis) benchmarks, which have repeatedly shown that rigorous FEL and structured governance can reduce average megaproject cost overruns by 15-25%. In Case A, each gate review under the SPDF served as a formalized pause for reflection, validation of readiness, and recalibration of assumptions—processes entirely absent in Case B. Furthermore, the integration of Early Contractor Involvement (ECI) and Value Engineering (VE) within the framework allowed Case A to benefit from cross-disciplinary insights at the earliest design stages. As emphasized in Love et al. (2016), ECI shifts the project's risk curve leftward, transferring critical constructability input into early design and thereby minimizing rework. This mechanism was observable in Case A's avoidance of USD 90 million in late changeorder costs—a concrete illustration of how structural integration translates to financial resilience. In contrast, Case B exemplified the "fragmented interface syndrome" described by Morris (2013), where siloed teams, late-stage contractor engagement, and reactive planning propagate uncertainty and degrade delivery efficiency. The absence of a unified framework created informational asymmetry and contractual defensiveness, leading to compounding cost and schedule distortions.

Safety and the Role of Governance Integration

Safety performance in Case A (TRIR 0.25) far exceeded Case B (TRIR 0.95). This finding reinforces the growing consensus in both industry and academia that **safety excellence correlates strongly with project governance maturity** (Reason, 1997; Hale & Borys, 2013). In SPDF-governed environments, safety is embedded as a "hard gate" requirement—no progression without demonstrable assurance of process safety and human factors readiness. This transforms safety from a compliance function to a **design and decision-making criterion**.

Moreover, the high near-miss reporting rate in Case A—though counterintuitive—signified an open, learning-oriented safety culture. Literature on **High Reliability Organizations (HROs)** (Weick & Sutcliffe, 2007) supports this interpretation: systems that actively report weak signals demonstrate a capacity for mindfulness and resilience. Psychological safety, as theorized by Edmondson (1999), amplifies this dynamic by reducing interpersonal risk and encouraging disclosure of small failures before they escalate.

In Case B, leadership's focus on cost and schedule urgency suppressed this learning behavior. As a result, underreporting created a "false positive" perception of safety performance, which was later invalidated by two Tier-1 process safety events. The pattern confirms that safety performance is not merely a function of procedural compliance but an emergent property of culture, leadership, and system integration.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Leadership as the Catalyst of Framework Effectiveness

A critical interpretive insight from this research is that **frameworks themselves do not guarantee success**; they function as enablers whose efficacy depends on leadership behavior. In Case A, the project director and senior leadership team exhibited **transformational and situational leadership traits**—open communication, constructive challenge, and empowerment of technical voices. These behaviors transformed governance gates from bureaucratic rituals into collaborative decision points.

This finding aligns with the conceptualization of "project governance as sensemaking" (Winch, 2014), wherein leaders translate procedural structures into shared understanding and purpose. The case findings further illustrate that transformational leadership bridges the formal and the informal dimensions of governance—linking codified processes (e.g., APM knowledge areas) with adaptive interpersonal behaviors that sustain team engagement under uncertainty.

In Case B, the contrasting directive leadership style eroded these linkages. Decisions were centralized, cross-functional communication was stifled, and fear of reprisal inhibited reporting. The result was a vicious cycle of late problem detection and defensive contracting. The qualitative evidence thus substantiates the proposition that **leadership style acts as a moderating variable** between structured frameworks and project performance outcomes.

The Synergistic Role of Psychological Safety and Integrated Teams

The Case A evidence demonstrates that **psychological safety functions as an operational amplifier** for structured project management frameworks. While frameworks provide the procedural scaffolding for decision-making, psychological safety ensures that those decisions are informed by full-spectrum information from all hierarchical levels.

In complex offshore environments, early identification of emergent risks (e.g., subsea design flaws, logistics constraints) depends on open communication across technical disciplines and contractual boundaries. The SPDF's emphasis on **integrated project teams (IPTs)**, when combined with a culture that values candor, creates a self-correcting feedback loop—errors are surfaced, discussed, and addressed rapidly.

This synergistic mechanism resonates with the literature on **team cognition and resilience engineering** (Hollnagel, 2011), which emphasizes that resilient systems learn and adapt faster than they fail. In Case A, psychological safety enabled proactive adaptation; in Case B, the lack of it allowed systemic brittleness to persist until failures occurred.

Thus, this study contributes to the growing understanding that **psychological safety is not a "soft" attribute but a structural determinant of technical and economic performance** in high-risk projects. The combination of structured frameworks and open team climates forms a dual architecture of control and learning—essential for both reliability and innovation.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

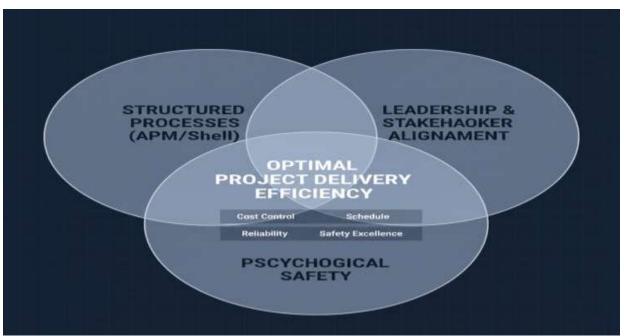


Figure 8. Synergy between structured frameworks, leadership alignment, and psychological safety.

Theoretical Integration: Linking Governance, Human Factors, and Performance

The findings of this study substantiate a multi-level theoretical integration across three domains of project management research:

- 1. **Governance Theory** The study confirms that structured governance frameworks (e.g., APM, SPDF) reduce variance in project outcomes through stage-gated assurance, alignment, and accountability (Müller, 2017). However, the analysis extends this theory by demonstrating that governance effectiveness depends on human enablers—specifically leadership and team culture.
- 2. **High Reliability and Organizational Behavior Theory** The Case A outcomes reflect characteristics of HROs: preoccupation with failure, commitment to resilience, and deference to expertise. Psychological safety and leadership maturity are shown to translate these HRO principles into daily project management practice.
- 3. **Socio-Technical Systems Theory** The integration of ECI, VE, and team empowerment highlights that performance improvements are not purely procedural but socio-technical—emerging from the interaction between technical systems and social processes. This supports the proposition by Lenfle & Loch (2010) that adaptive governance frameworks outperform rigid ones in high-uncertainty contexts.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Practical Implications for Project Directors and Practitioners

From a practical standpoint, the findings carry several implications for project directors, senior executives, and policymakers within oil and gas organizations:

- 1. **Framework Fidelity and Tailoring** Structured frameworks such as APM or SPDF must be implemented with fidelity to their intent, not merely their form. Tailoring is permissible, but elimination of assurance gates or stakeholder alignment milestones undermines the systemic safeguards that control risk.
- 2. **Leadership Development and Cultural Competence** Investment in leadership training should emphasize emotional intelligence, psychological safety facilitation, and situational adaptability. The ability of leaders to foster open dialogue is a direct determinant of risk visibility and innovation.
- 3. **Contractor Integration through Early Involvement** Formalizing ECI as a pre-FEED activity can deliver substantial value. Contracts should reward transparency, joint problem-solving, and shared savings—aligning incentives with project goals rather than adversarial cost protection.
- 4. **Measurement of Learning and Safety Maturity** Safety metrics should prioritize leading indicators (e.g., near-miss reporting rates, learning reviews) over lagging ones (e.g., LTIF/TRIR). Projects that encourage reporting culture will appear "worse" on surface metrics but are in fact safer in systemic terms.
- 5. **Institutionalization of Lessons Learned** Organizations should embed mechanisms for cross-project learning within their frameworks. Case A demonstrated how structured reflection cycles and digital knowledge repositories enable cumulative performance improvement across portfolios.

These recommendations illustrate that enhancing delivery efficiency requires **synchronized evolution in both organizational systems and leadership behavior**. Frameworks provide the language of discipline; leadership provides the language of meaning.

Contribution to the Field of Project Management

This study contributes to the academic discourse in several distinct ways:

- **Empirical Synthesis:** By juxtaposing two contrasting cases, it offers evidence that structured frameworks can yield quantifiable improvements in cost, schedule, and safety performance when combined with collaborative contracting and adaptive leadership.
- Conceptual Integration: It bridges the traditional dichotomy between "hard" (technical, procedural) and "soft" (behavioral, relational) factors in project management, demonstrating their interdependence.
- **Theoretical Advancement:** It extends governance theory by positioning psychological safety as a mediating construct linking leadership behavior to project performance outcomes—an area underexplored in engineering project management research.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

• **Practical Relevance:** The findings provide a blueprint for senior practitioners on how to operationalize frameworks like SPDF and APM BoK to not only control risk but also enable creativity and resilience.

Limitations and Directions for Future Research

Although the comparative case study design provides deep contextual insight, its scope is limited by its hypothetical construct and reliance on synthesized data. Future research could enhance external validity through:

- Cross-industry Comparative Studies, examining whether similar governance-culture synergies exist in other high-risk sectors such as nuclear or aerospace.
- **Quantitative Validation**, using large-sample statistical models to test causal relationships between framework maturity, leadership behaviors, and delivery performance.
- **Longitudinal Studies**, observing how framework adherence and psychological safety evolve across multiple project phases or within organizational project portfolios.

Such research would advance understanding of how governance systems can dynamically adapt to uncertainty while maintaining efficiency and safety integrity.

Figure 9. Causal pathway linking structured frameworks to improved project outcomes.

Synthesis

The comparative findings and theoretical linkages converge on a central conclusion: **structured project management frameworks act as enablers of performance, but only when animated by leadership and culture that prioritize openness, learning, and integration**. In high-risk oil

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

and gas environments—where ambiguity, technical complexity, and stakeholder scrutiny coexist—delivery efficiency is not achieved by rigidity but by disciplined adaptability. The APM and Shell frameworks provide the scaffolding for this discipline; leadership and psychological safety supply the adaptability.

Thus, the relationship between structure and performance is not linear but **synergistic**. Technical processes govern the system, while human processes sustain its resilience. Together, they convert uncertainty from a liability into a managed domain of opportunity—a hallmark of excellence in high-ambition, high-impact project delivery.

CONCLUSION

The findings of this research affirm that the **application of structured project management frameworks**—such as the Association for Project Management (APM) Body of Knowledge and the Shell Project Delivery Framework (SPDF)—fundamentally enhances delivery efficiency in **high-risk, capital-intensive oil and gas projects**. By integrating disciplined governance structures, early contractor engagement, and leadership behaviors that foster psychological safety, organizations can achieve substantial improvements in **cost, schedule, and safety performance**. This conclusion synthesizes the study's arguments, explicitly answers the research questions posed, and outlines practical recommendations and future research directions.

Summary of Key Findings

The comparative analysis between the two case studies—Case A (Integrated APM/SPDF Framework) and Case B (Fragmented Traditional Approach)—revealed marked performance differentials across all key dimensions. Case A demonstrated a 4.2% cost underrun, completed 3.3% ahead of schedule, and achieved a Total Recordable Incident Rate (TRIR) of 0.25, compared to Case B's 20% cost overrun, 33% schedule delay, and TRIR of 0.95. These quantitative results were complemented by qualitative insights that revealed deeper causal mechanisms: integrated governance structures, cross-functional collaboration, and psychologically safe leadership behaviors created an environment conducive to proactive risk management and innovation.

Structured frameworks proved to be **not merely administrative instruments**, but strategic enablers of coordination, accountability, and learning. The disciplined application of stage-gated assurance processes, as advocated by both APM and SPDF, ensured early definition of scope, consistent stakeholder alignment, and timely intervention in emerging risks. In contrast, the fragmented model in Case B amplified uncertainty and fostered adversarial relationships, which cascaded into higher costs and degraded safety performance.

Furthermore, the integration of **Early Contractor Involvement** (**ECI**) and **Value Engineering** (**VE**) within the structured framework enabled the translation of technical knowledge into economic efficiency. These mechanisms provided early constructability input and optimized design maturity, mitigating the risk of rework and scope changes. The study thus reinforces the

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

theoretical and empirical position that early alignment and integrated planning are vital to megaproject resilience.

Addressing the Research Questions

How do structured project management frameworks impact cost, schedule, and safety outcomes in high-risk oil and gas projects? The study demonstrates that structured frameworks have a direct and positive impact on project performance metrics. They facilitate disciplined front-end loading, transparent decision-making, and continuous assurance, leading to better predictability in both cost and schedule. Safety outcomes improve because structured governance embeds safety as a design parameter rather than a compliance obligation.

What is the relationship between framework integration, contractor performance, and costsaving mechanisms?

Framework integration—particularly through ECI, VE, and alliancing models—creates a **cooperative ecosystem** where contractors are engaged as value partners rather than transactional executors. This early collaboration fosters mutual trust, reduces interface risks, and enables cost avoidance through design optimization and constructability input.

How do leadership and psychological safety influence the effectiveness of project management frameworks?

Leadership behaviors act as the **catalytic force** that transforms procedural frameworks into living systems of learning and adaptation. Transformational and situational leadership styles foster open communication, empower technical voices, and encourage error reporting. Psychological safety amplifies these effects by enabling individuals to identify and escalate risks early. In contrast, directive or punitive leadership undermines framework efficacy, creating latent risks that manifest as cost and schedule overruns.

Limitations of the Methodological Approach

While the qualitative case study method provided deep insight into organizational dynamics and governance efficacy, this research is **limited by its reliance on synthesized case constructs** rather than empirical field data. The hypothetical nature of the cases, though grounded in established industry patterns and benchmarking studies, constrains the external validity of the findings. Furthermore, the qualitative emphasis limits statistical generalization; causal relationships between variables such as psychological safety and safety performance, though logically inferred, require empirical validation through quantitative modeling.

Nevertheless, the methodological design remains robust for **theory-building and conceptual integration**. The strength of this approach lies in its ability to synthesize insights from both practice and scholarship—offering a coherent narrative of how structured frameworks interact with human and organizational factors to produce performance outcomes.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Practical Recommendations for Industry Practice

Based on the findings, several actionable recommendations can be advanced for practitioners and decision-makers in the oil and gas sector:

1. Institutionalize Framework Governance:

Organizations should adopt structured project management frameworks (such as SPDF or APM BoK) as core governance instruments across all project phases. These frameworks must not be selectively applied or diluted under schedule pressure.

2. Mandate Early Contractor Involvement (ECI):

Integrating contractors during pre-FEED and design stages enhances constructability, reduces rework, and aligns incentives. Contractual mechanisms should reward collaboration, transparency, and shared value creation.

3. Invest in Leadership Development:

Technical competence alone is insufficient. Project directors and senior managers should receive formal training in transformational and situational leadership, with emphasis on fostering psychological safety and open communication.

4. Measure Safety Culture, Not Just Safety Incidents:

Shift focus from lagging indicators (TRIR, LTIF) to leading indicators such as near-miss reporting rates, learning events, and behavioral engagement scores. A high reporting culture should be seen as a strength, not a weakness.

5. Embed Continuous Learning and Feedback Loops:

Lessons learned from previous projects should be captured, analyzed, and integrated into subsequent framework revisions. This practice institutionalizes organizational learning and mitigates recurrence of systemic errors.

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Figure 10. Summary of practical recommendations for enhancing delivery efficiency in future projects.

Future Research Directions

Building on these insights, future research should focus on **empirical validation** and **cross-sectoral analysis**. Specifically:

- **Quantitative Studies:** Employ regression or structural equation modeling to test causal relationships between governance maturity, leadership behavior, and project outcomes.
- **Longitudinal Research:** Track the evolution of framework adherence and team culture across multiple project phases or portfolios to understand sustainability of performance improvements.
- Comparative Cross-Industry Studies: Extend analysis to sectors such as nuclear, aerospace, and renewable energy to test the transferability of structured frameworks in other high-risk domains.
- **Mixed-Methods Approaches:** Combine performance metrics with ethnographic or survey-based research to capture both the numerical and human dimensions of project efficiency.

Closing Synthesis

This research concludes that structured project management frameworks are indispensable tools for achieving delivery efficiency in high-risk oil and gas projects. However, their true power lies in the integration of process discipline with human-centric leadership and

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

organizational culture. When frameworks such as APM and SPDF are operationalized through collaboration, trust, and open communication, they create a synergistic environment where technical excellence and human reliability coexist.

In essence, successful project delivery in the modern oil and gas sector is no longer defined solely by adherence to scope, budget, and schedule. It is defined by an organization's ability to integrate governance, technology, and human systems into a **resilient**, **adaptive**, **and learning-oriented framework**. Structured project management methodologies, when underpinned by enlightened leadership and psychological safety, provide precisely that architecture—transforming uncertainty into managed opportunity and ambition into sustainable achievement.

REFERENCES

- Association for Project Management. (2012). *APM Body of Knowledge* (6th ed.). Association for Project Management.
- Cantarelli, C. C., van Wee, B., Molin, E. J. E., & Flyvbjerg, B. (2013). Different cost performance: Different determinants? The case of cost overruns in Dutch transportation infrastructure projects. *International Journal of Project Management*, 31(3), 494–507. https://doi.org/10.1016/j.ijproman.2013.03.007
- Edmondson, A. C., Dillon, J. R., & Roloff, K. S. (2007). Three perspectives on team learning. *Academy of Management Annals, 1*(1), 269–314. https://doi.org/10.1080/078559811
- Flyvbjerg, B., Bruzelius, N., & Rothengatter, W. (2003). *Megaprojects and risk: An anatomy of ambition*. Cambridge University Press.
- Hallock, B. E., & Zack, J. G., Jr. (2018). What have we learned from megaprojects? In *Proceedings* of the 8th International Society of Construction Law Conference (pp. 1–43). International Society of Construction Law.
- Kim, S., & Lee, S.-H. (2020). How psychological safety affects team performance: Evidence from manufacturing teams. *Frontiers in Psychology*, 11, 1048. https://doi.org/10.3389/fpsyg.2020.01048
- Love, P. E. D., Holt, G. D., Shen, L.-Y., Irani, Z., & Edwards, D. J. (2016). Using value-and waste-based thinking to enhance labour productivity in project environments. *International Journal of Productivity and Performance Management*, 65(6), 819–835. https://doi.org/10.1108/IJPPM-08-2015-0114
- Lüddin, R. A., Arvidsson, N., Brady, T., Ekstedt, E., Midler, C., & Sydow, J. (2015). *Managing and working in project society: Institutional challenges of temporary organizing*. Cambridge University Press.
- Merrow, E. W. (2011). *Industrial megaprojects: Concepts, strategies, and practices for success*. John Wiley & Sons.
- Müller, R. (2017). Project governance: Fundamentals, tools and mechanisms. Gower Publishing. Rahman, M. M., & Kumaraswamy, M. M. (2014). Empirical investigation of team-based contracting in joint venture projects. Proceedings of the Institution of Civil Engineers —

Online ISSN: 2055-012X (Online)

Website: https://www.eajournals.org/

Publication of the European Centre for Research Training and Development -UK

Management, Procurement and Law, 167(6), 263–274. https://doi.org/10.1680/mpal.13.00019

- Sankaran, S., Müller, R., Drouin, N., & Basu, R. (2020). Alignment between project governance and organizational governance: A longitudinal case study. *International Journal of Project Management*, 38(1), 47–59. https://doi.org/10.1016/j.ijproman.2019.06.009
- Weick, K. E., & Sutcliffe, K. M. (2007). *Managing the unexpected: Resilient performance in an age of uncertainty* (2nd ed.). John Wiley & Sons.
- Williams, T., Samset, K., & Sunnevåg, K. J. (2019). Governance structures in major capital projects: A longitudinal analysis. *International Journal of Project Management*, *37*(3), 333–346. https://doi.org/10.1016/j.ijproman.2018.09.003
- Zhou, W. (2020). Emotional intelligence, psychological safety, and team performance: Evidence from a longitudinal study in China. *Management Research Review*. Advance online publication. https://doi.org/10.1108/MRR-02-2020-0091
- Kantachote, P., Eng, M. H., & Lee, M. Y. (2019). Early contractor involvement: Drivers, enablers, and benefits in construction projects. *Engineering, Construction and Architectural Management*, 26(4), 713–731. https://doi.org/10.1108/ECAM-07-2018-0321
- Locatelli, G., Palmer, K., & Mancini, M. (2021). From resilience to value: A systematic review of megaproject literature. *International Journal of Project Management*, 39(5), 472–485. https://doi.org/10.1016/j.ijproman.2020.12.009
- Turner, J. R. (2009). The handbook of project-based management (3rd ed.). McGraw-Hill.
- Vidalis, S., & Poulin, D. (2018). Contractor management models in heavy-engineering projects: Alliancing and integrated project teams in the oil & gas sector. *International Journal of Construction Management*, 18(1), 1–13. https://doi.org/10.1080/15623599.2017.1288272
- Wolstenholme, A., & Cooke-Davies, T. (2006). Structure and narrative in planning and uncertainty: The rise and fall of the "once" project manager. *International Journal of Project Management*, 24(8), 677–687. https://doi.org/10.1016/j.ijproman.2006.06.006