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ABSTRACT: In this paper, Exponential distribution as the only continuous statistical 

distribution that exhibits the memoryless property is being explored by deriving another two-

parameter model representing the sum of two independent exponentially distributed random 

variables, investigating its statistical properties and verifying the memoryless property of the 

resulting model. 
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INTRODUCTION 

 

Exponential distribution is a continuous probability model that is similar in one way to the 

geometric distribution (the duo are the only probability models that exhibit memoryless 

property). It is the only continuous probability distribution that has a constant failure rate 

(Garcia-Ortega, 2005 and Montgomery and Runger, 2003). It has been used severally for the 

analysis of Poisson processes and it is perhaps the most widely used statistical distribution for 

problems in reliability. 

It has been established in literatures that if  are independently and 

identically distributed Exponential random variables with a constant mean  or a constant 

parameter  (where  is the rate parameter), the probability density function (pdf) of the sum of 

the random variables results into a Gamma distribution with parameters n and . 

 

In this article, it is of interest to know the resulting probability model of Z  , the sum of 

two independent random variables  and , each having an Exponential distribution but not 

with a constant parameter. That is,  and . Besides, we seek to know if 

the resulting model will still exhibit the memoryless property of the Exponential distribution and 

to investigate some of the statistical properties of the new model.  

 

The technique of Convolution of random variables which has notably been used to derive the 

Convoluted Beta-Weibull distribution (Nadarajah and Kotz, 2006; Sun, 2011) and Convoluted 

Beta-Exponential distribution (Mdziniso, 2012; Shitu et al., 2012) shall be adopted. 
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METHODOLOGY 

 

If  and  are iid Exponential random variables with parameters  and  respectively, 

Then, 

 

Let , then,  

 
By the concept of Convolution of random variables, 

 

 

 
        (1) 

 

  
The model in Equation (1) above represents the probability model for the sum of two iid 

Exponential random variables. 

 

Validity of the model  

For the model  to be a valid model, it suffices that  

 

 

 

 
 

Cumulative Density Function (CDF) 

By definition, the cdf is derived by;  

 

 

       (2) 

We can deduce from Equation (2) that  

2.3 Shape of the model 
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Differentiating  in Equation (1) with respect to z and equating the result to zero; 

 
Solving for z, 

 
This value indicates that the model has one mode (Unimodal) 

The graph in Fig. 1 shows the shape of the distribution for  and 

 

 
Fig. 1: Graph for the pdf of variable Z (where A1=  and A2= ) 

It can be deduced from Fig. 1 that the parameters  and  are both shape parameters. Increase 

in the value of  results in increase in the peak of the graph and increase in the value of  

results in increase in the width of the graph. 

 

Parameter Estimation 

 

Let  denote random sample from ‘n’ independent and identically distributed random 

variables each having the pdf derived in Equation (1) above. Using the method of maximum 

likelihood estimation, the likelihood function is given by; 

 

Let  
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       (3) 

 

       (4) 

 

Setting  and  to zero and solving for  and  gives the maximum likelihood estimates 

of the parameters. 

 

 

 

Hazard Function 

By definition, the hazard function for a random variable Z is defined by; 

 

        (5) 

Fig. 2 shows the graph of the hazard rate function for the model 

 
Fig. 2: Graph for the hazard function 

It can be deduced from Fig. 2 that the hazard rate decreases at variable Z increases and remains 

at a constant value at some points. The meaning is that, the model in Equation (1) will be 

appropriate model events whose risk is high at the early stage, the risk get reduced with time and 

remains constant at a point. 

 

Asymptotic Behavior 

We seek to investigate the behavior of our model in Equation (1) as  and as . This 

involves considering  and  
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These results confirm further that the model in Equation (1) has only one mode (Uni-modal) 

 

Moment Generating Function 

The moment generating function (m.g.f) of a random variable Z is denoted by . 

where  , 

From the properties of m.g.f, 

  
where 

 

 
  and  are the moment generating functions for a convoluted exponential 

distribution with parameters  and  respectively. Hence, 

         (6) 

Equation (6) can be re-written as  

The Characteristic function  

 
From the result in Equation (6), we can confidently generalize that if  are 

independently and identically distributed random variables, each having Exponential distribution 

with parameter, the moment generating function of the sum  can be 

expressed as 

         (7) 

 

Moments 

The rth raw moment of a random variable, say Z is given by; 

 
As derived in Equation (6), . Therefore, the first four moments 

are derived below as; 

  

  

  

  

  
Hence, we can make the following generalizations; 
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(1) The mean of the sum of ‘n’ independent Exponential distribution is the sum of individual means. 

That is, if , then, 

         (8) 

(2) The rth moment of Z can be expressed as; 

        (9) 

 

Cumulant generating function 

By definition, the cumulant generating function for a random variable Z is obtained from, 

 

 
By expansion using Maclaurin series, 

       (10) 

From the definition of cumulants, the cumulant  of a random variable Z are obtained from the 

coefficients of  In Equation (10). 

Hence,  

        (11) 

The first four cumulants are given below as; 

 

 

 

 
The following can be deduced from the results above; 

(1) The first cumulant  is the mean of the random variable Z 

(2) The second cumulant  is the variance of Z 

(3)  

  

(4)  
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Memoryless Property 

We say that an Exponential distribution exhibits memoryless property because the condition 

below holds; Given that a bulb has survived s units of time, the probability that it survives a 

further t units of time is the same as that of a fresh bulb surviving t unit of time. That is, 

 
where X is a random variable. 

 

           (12) 

 

 

 

That is,  

Let us now consider the distribution of the sum of two independent Exponential distributions 

given in Equation (1); 

From Equation (12),  

 

 

Where  

Hence, we can infer that the memoryless property does not hold for the distribution of the sum of 

two independent Exponential distributions 

 

CONCLUSION 

 

In this article, we used the concept of convolution to derive a two-parameter distribution 

representing the sum of two independent Exponential distributions. Some of its statistical 

properties were also investigated. It was observed that the distribution is positively skewed and 

has only one mode. Based on the behavior of the hazard function, the model would be 

appropriate in fitting data of stock returns, death roll in insurgencies, survival of sickle cell 
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patients and survival of a new product in the market among others. It was also observed that the 

memoryless property does not hold for this model. 

 

REFERENCES 

 

Douglas C. Montgomery & George C. Runger (2003). Applied Statistics & Probability for 

Engineers. Third Edition  

Fraile R., Garcia-Ortega E. (2005) “Fitting an Exponential Distribution”, Journal of Applied 

Metereology Volume 44, 1620-1625. 

Mdziniso, Nonhle Channon. (2012). “The Quotient of the beta-Weibull Distribution”. Theses, 

Dissertations and Capstones. Paper 233 

Nadarajah, S. and Kotz, S (2006) “The Beta- Exponential Distribution”. Reliability Engineering 

and System Safety, 91(1): 689-697. 

Olanrewaju I. Shittu, Kazeem A. Adepoju and OlaOluwa S. Yaya (2012). “On the Convoluted 

Beta-Exponential Distribution”, Journal of Modern Mathematics and Statistics 6 (3-6): 14-

22. 

Sun J. (2011), Statistical Properties of a Convoluted Beta-Weibull Distribution”. Master’s 

Theses, Marshal University.   

  

 

 


